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a b s t r a c t

A regional chemical transport model assimilated with monthly mean satellite and ground
based aerosol optical depth (AOD) observations was used to produce three dimensional
distributions of aerosols throughout Asia for a period of four years. The model was eval-
uated with daily assimilation of AOD for the month of April 2005. Sulfur Transport
dEposition Model (STEM), a regional chemical transport model, was used to simulate
aerosol distributions at a resolution of 50� 50 km with a time interval of 3 h. Monthly
mean Moderate Resolution Imaging Spectroradiometer (MODIS) AOD along with AErosol
RObotic NETwork (AERONET) AOD was used in an optimal interpolation assimilation
scheme to yield regional distributions of aerosols. The MODIS AOD and aerosol fine mode
fraction information (where available) were used in the assimilation technique. The daily
assimilation of AOD results shows that the optimal interpolation algorithm is able to
significantly improve model aerosol mass prediction skills at the two sites in Asia. Sensi-
tivity studies were also conducted with different assimilation parameters on a daily
assimilation scale and these results are discussed. The assimilation results of four-year
aerosol fields were used to study the spatial and temporal distribution of aerosols in Asia.
Two remote sites, Hanimaadhoo and Gosan were chosen as the case studies to study the
outflow from the Indian subcontinent and East Asia. Seasonal and vertical structures of the
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aerosols are presented at these two sites. Positive Matrix Factorization (PMF), a factor
analytic method was also used to characterize the source profile and source contribution at
these two locations. A three-factor solution was able to explain more than 80% of the
variation in the individual species at Hanimaadhoo and 90% variation of aerosol loadings at
Gosan. The four-year averaged PMF model results were able to capture the seasonality of
anthropogenic and dust loadings at both these locations. In addition, the PMF model
identified the differences in the composition of anthropogenic aerosols over Hanimaadhoo
and Gosan reflecting the differences in regional emissions. The PMF derived factors could
be used as additional constraints for future assimilation studies.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The Intergovernmental Panel on Climate Change (IPCC)
places a ‘very high confidence’ that human activities are
contributing to global warming since 1750 (IPCC, 2007).
The report also points out that while there has been greater
understanding about the role that aerosol plays in climate
change, they are still ‘the dominant uncertainty in radiative
forcing’. Aerosols can impact climate through direct and
indirect processes. Light scattering, by particles containing
sulfate, organic carbon and nitrate, can reduce visibility by
60–95% and absorption by soot can reduce visibility by 5–
40% (Ramanathan and Carmichael, 2008; Jacobson, 2005).
Several studies have shown significant adverse impact of
aerosol particles on the earth’s hydrological cycle (Ram-
anathan et al., 2001a), agricultural production (Chameides
et al., 1999), and human health (Pope et al., 2002).

To evaluate the effects of aerosols on climate it is
necessary to estimate their spatial and temporal distribu-
tions. Currently there are large uncertainties in the spatial
and temporal distributions of aerosols. An important
metric in the characterization of aerosol distribution is
aerosol optical depth (AOD). AOD is defined as a column
integrated extinction coefficient over a unit cross section.
The aerosol extinction coefficient is a function of wave-
length l, and m, the particle refractive index. Recent
satellite-based remote sensing of AOD has greatly
improved our understanding of aerosols properties. A
number of satellite-based instruments such as MODIS,
MISR, TOMS and OMI provide aerosol observations; further
details of satellite-based remote sensing are found else-
where (IGAC, 2007). Because of its spatial and temporal
coverage, satellite-based aerosol optical depth is the most
practical measurement of aerosol amount for global
assessments (Anderson et al., 2005). However, despite
satellite-derived aerosol observations, there is a strong
need for chemical transport model calculation of aerosol
concentration because these satellite products do not
reveal chemical composition or the emission sources
needed for any effective mitigation strategy. Chemical
transport models provide a means to link emissions with
aerosol distributions, but are also uncertain due to uncer-
tainties in emission sources, meteorology, and aerosol/
chemistry processes (Kinne et al., 2006).

Data assimilation, an approach first used in generating
initial condition for the numerical weather prediction,
offers a means to reduce the uncertainties in the estimates
of aerosol distributions. Several mathematical techniques
of atmospheric data assimilation have been developed and
their scientific basis is presented elsewhere (for e.g. Kalnay,
2003). Studies using data assimilation of observed atmo-
spheric trace gases such as CO and ozone with mathe-
matical models have been successful in obtaining better
analysis (Jeuken et al., 1999; Khattatov et al., 2000;
Lamarque et al., 2002; Chai et al., 2007).

Aerosol data assimilation using AVHRR satellite data
into three dimensional chemical transport model was first
introduced by Collins et al. (2001) for studying the INDOEX
aerosols using the MATCH model. They used an optimal
interpolation technique initially developed for meteoro-
logical applications (Lorenc, 1986) and trace gas species
(Khattatov et al., 2000). Since then, several other
researchers have assimilated satellite-derived aerosol
observations to chemical transport models. Wang et al.
(2004) used GEOS 8 derived aerosol observations to
assimilate dust and sea salt aerosols in the RAMS model
using a Newtonian nudging scheme. A 3D-Var method was
used by Niu et al. (2007) to assimilate dust loading
retrieved from Chinese geostationary satellite FY-2C (Niu
et al., 2007). Both these models showed that the assimila-
tion greatly improved analysis when comparing with
independent observations. Yu et al. (2003) used the
optimal interpolation technique described by Collins et al.
(2001) to assimilate MODIS AOD with their global transport
GOCART model (Yu et al., 2003). They used monthly MODIS
AOD to assimilate GOCART monthly AOD calculations. Their
results showed that the assimilated data were better
correlated with surface AERONET AOD data when
compared to either MODIS data alone or with just the
GOCART modeled AOD.

In this paper we have used data assimilation to produce
aerosol distributions with reduced uncertainties for the
study region of Asia. These distributions are subsequently
used in estimates of aerosol radiative forcing (Chung et al.,
submitted for publication). A four-year period is simulated
so that individual aerosol loading as well as their inter-
annual variability can be analyzed. Further, the paper
explores the technique of combining forward (satellite and
chemical transport) and backward (receptor) modeling
approaches to study the distribution of aerosols at two sites
with different emission sources. This technique may be
further refined and used in future assimilation in an itera-
tive process to get better constrained aerosol distributions.

The paper is organized as follows: we first describe the
assimilation technique, and then describe our regional 3D
chemical transport model along with assimilation algorithm
used. We then describe the availability and usage of satellite
and other observation data in our study. Next, we present
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the methodology of our receptor modeling technique. In the
results section, we first present the assimilated model AOD
evaluation and sensitivity to different model parameters.
Then we present the regional distribution of the aerosols
based on a four-year simulation. Finally, we discuss the
results of combined forward and backward models in
describing aerosol characteristics at two locations.

2. Methodology

2.1. Aerosol data assimilation

We implemented an optimal interpolation technique
similar to the methodology described by Collins et al.
(2001) for INDOEX aerosols using their MATCH model. The
mathematical relationship between the posterior aerosol
distribution (analysis) with the model predicted aerosol
(background) and satellite-based observation (observation)
is:

s0m ¼ sm þ Kðso � HsmÞ: (1)

s0m is the posterior aerosol optical depth while so, and sm,
are the observed and modeled AOD, respectively. K is the
Kalman gain matrix and H is a linear interpolator from
model space to observation space. Since we transform the
observation AOD into the same model grid as the STEM
model grid, the H matrix is simply the identity matrix. K
matrix is calculated based on the background and obser-
vation error covariance matrices and is defined by Eq. (2).

K ¼ BHT
�

HBHT þ O
��1

(2)

B and O are the error covariance matrices of background
and the observation fields, respectively. Detailed discussion
and assumption used to derive the B and O matrices are
discussed elsewhere (Khattatov et al., 2000; Collins et al.,
2001). In Eqs. (3) and (4) we simply restate the mathe-
matical relationship defining B and O matrices such that
outcome of the sensitivity studies discussed in Section 3.1
may be better understood.

O ¼ ðfoso þ 3oÞ2I (3)

3o is the minimum Root Mean Square (RMS) error of the
observation and fo is the fractional error in observation
AOD.

Bij ¼ ðfmsm þ 3mÞ2exp

"
�

d2
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y

2l2
xy

#
(4)

3m is the minimum RMS uncertainty in the modeled AOD.
fm is the fractional error in the model AOD. Variables dx and
dy are the horizontal distances between two model grid
points i and j, and lxy is the horizontal correlation length
scale for errors in the model fields.
2.2. Chemical transport model description

The Sulfur Transport dEposition Model (STEM-2K1,
hereafter referred to as STEM) was used to generate three
dimensional aerosol distributions from 2001 to 2004 and
for April 2005. The April 2005 assimilation is used for
model validation and to conduct sensitivity experiments
with tunable assimilation parameters. The STEM model
has been used previously to study aerosols and trace gases
during the same time period over South and South East
Asia (Carmichael et al., 2003; Tang et al., 2004; Guttikunda
et al., 2005; Adhikary et al., 2007). This is the first appli-
cation of the STEM model to simulate high resolution
(both spatial and temporal) aerosol concentration over
multiple years so that the averaged annual aerosol distri-
bution with inter-annual variability can be analyzed. The
STEM 3D model has a horizontal resolution of 50� 50 km.
The model altitude ranges from the surface to a height of
about 14 km with 23 layers in between. The STEM model
utilizes USGS land use 25 categories to model land use
dependant variables. The model is simulated with output
generated at every 3 h. Geographically the model domain
ranges from 20S to 50N latitude and from 40E to 140E
longitude.

The meteorological model used for this study was the
PNNL-MM5 model. Further details of the PNNL-MM5
meteorological model parameters and the STEM model are
discussed by Chung et al. (submitted for publication) and
Adhikary et al. (2007). Anthropogenic emissions inventory
used in this study was primarily from the emissions
inventory developed for TRACE-P intensive field campaign
(Streets et al., 2003). The resolution of this emission
inventory was 0.5� 0.5 degrees for area sources and actual
physical location for the large point sources. Since this
modeling domain is bigger than TRACE-P domain, emis-
sions data from EDGAR database and global black carbon
(BC) and organic carbon (OC) emissions estimate from
Tami Bond et al. were used to fill the extended
geographical areas (Olivier and Berdowski, 2001; Bond
et al., 2004). Monthly varying BC and OC emissions from
biomass burning were included in this study based on
published emissions data (van der Werf et al., 2006). The
resolution of the biomass burning emissions inventory is
1�1 degree, which was then interpolated to our model
grid. Secondary sulfate aerosols were calculated using
a parameterized equation for its formation from SO2. This
methodology has been able to capture the seasonality and
magnitude reasonably well in Asia (Uno et al., 2003;
Adhikary et al., 2007). Carbonaceous aerosols were
allowed to age with a fixed ageing time converting them
from hydrophobic to hydrophilic aerosols. Hydrophilic
aerosols were subject to wet scavenging by precipitation
while hydrophobic were only dry deposited. The emis-
sions of sea salt were calculated based on the parameter-
ization of Gong (2003). Dust emissions were calculated
online based on the methodology discussed by Tang et al.
(2004). The emissions of carbonaceous and sulfate aero-
sols were assumed to be in the sub-micron range (diam-
eter< 1 mm) and were not further resolved into any size
bins. Sea salt emissions were calculated for four different
size bins. However, during transport they were modeled as
fine mode (<2.5 mm) and coarse mode (2.5 mm<

diameter< 10 mm). Dust transport was modeled using two
size bins: submicron and super micron (1 mm<

diameter< 10 mm).
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2.3. Assimilation algorithm

The STEM model was used to calculate three dimen-
sional aerosol concentrations. The aerosols modeled and
subsequently impacted by assimilation are sulfate, BC, OC,
sea salt and mineral dust. The model does not calculate
secondary organic aerosol (SOA) or nitrate aerosols. The
aerosol mass distributions obtained from STEM were then
used to calculate AOD using chemical species-specific
extinction information. The extinction coefficient parame-
ters used in the STEM model are reported in the paper by
Penner et al. (2001). Two dimensional distribution of AOD
was then used as the background field for the optimal
interpolation algorithm discussed previously. The obser-
vation-based AOD distribution was then compared with
the background AOD.

The data assimilation technique was conducted for both
daily and monthly time steps. The four-year simulation
utilized monthly average values. The technique of using
monthly assimilated satellite data has been previously
employed by Yu et al. (2003) to study the annual aerosol
distribution and its impact on radiative forcing. By simu-
lating and assimilating observations for more than a year,
we were able to study the multiyear averaged spatial
distribution and analyze the inter-annual variability. The
assimilation algorithm is as follows: first, the STEM model
calculated three dimensional aerosol concentrations every
3 h for all four years. This data was then averaged to
produce a monthly three dimensional aerosol concentra-
tions and monthly AOD. The STEM model generated AOD
was then used for assimilation with observed AOD derived
from MODIS and AERONET AODs. The B (Eq. (3)) and O (Eq.
(4)) matrices are calculated using the parameters provided
by Collins et al. (2001) study. We then calculate the K
matrix (Eq. (2)) at each assimilation step. We propagate the
updated mixing ratios forward in time for the daily
assimilation case; however, for the multiyear monthly
assimilation we do not.

Our methodology differs from Collins et al. in that our
assimilation algorithm impacts sea salt distribution while
their work chose to keep the modeled sea salt distribution
fixed. Another difference in our assimilation technique
from Collins et al. (2001) and Yu et al. (2003) is that we
utilize both the coarse mode and fine mode AOD available
from MODIS data. Coarse mode AOD was calculated from
total AOD (which was available) minus the fine mode
fraction. In our assimilation methodology, when there was
no fine mode fraction available at the model grid point,
the assimilation was done using the total AOD. So our
observation vectors are fine mode AOD and coarse mode
AOD/total AOD. Our background vectors are modeled fine
mode AOD (sulfate-AODþ BC-AODþOC-AOD) and
modeled coarse mode AOD (dust-AODþ sea salt-AOD). At
each time step, our assimilation impacts the concentration
of anthropogenic aerosols namely sulfate, black carbon
and organic carbon linearly based on the ratio of assimi-
lated fine mode AOD to background AOD. Similarly, at each
time step the concentration of dust and sea salt (regard-
less of the size distribution) was adjusted linearly based
on the ratio of assimilated coarse mode/total AOD to
background coarse AOD.
2.4. Observation data description

Satellites provide a variety of aerosol related param-
eters that can be used to constrain aerosol distributions.
In this paper the observation data is the Moderate
Resolution Imaging Spectroradiometer (MODIS) aerosol
optical depth. For the daily data assimilation case, we
obtained from the LAADS (Level 1 and Atmosphere
Archive and Distribution System) website, Level 3 Terra
MODIS Collection 4 AOD data at 550 nm wavelength
products over the ocean and continent at the spatial
resolution of 1�1 degree. The data was then interpo-
lated to our model resolution. The time series compar-
ison of assimilated MODIS AOD was done against
AErosol RObotic NETwork (AERONET) sun photometer
AOD obtained from the AERONET website. We do not
integrate AERONET sun photometer AOD into the MODIS
AOD observations for the daily assimilation run during
April 2005. For the four-year run, the MODIS and AER-
ONET observations were integrated into the same
observation field, this integration methodology is pre-
sented in detail in Chung et al. (2005). Total AOD and
fine mode fraction information from MODIS were used
for both the daily assimilation and the four-year monthly
assimilation. Mass measurements of total particulate
matter at Kathmandu, Nepal, and Hanimaadhoo, Mal-
dives, were obtained from the Atmospheric Brown Cloud
Project described in detail elsewhere (Ramanathan et al.,
2007; Stone et al., 2007).
2.5. Receptor modeling algorithm

PMF (Positive Matrix Factorization), a form of factor
analytic method, has been widely used in the atmospheric
field for source apportionment studies involving ambient
concentration measurements with unknown source
profiles (Lee et al., 1999; Paterson et al., 1999; Polissar et al.,
1999; Chueinta et al., 2000; Kim et al., 2005). The aim of
PMF is to obtain two matrices G and F, which explain the
variation in the data set X, a matrix, consisting of n number
of observations and m chemical species. Mathematically,

X ¼ G F þ E (5)

Where, G is an n by p matrix of source contributions
describing the temporal variation of the sources, F is a p by
m matrix of source profiles and E represents the unex-
plained data variance by the model. PMF solves Eq. (5)
using an explicitly weighted least square approach and
minimizes the objective function Q(X, s, G, F) defined as:

Q ¼ kX � GFk2
F

s
¼
Xn

i¼1

Xm

j¼1

�
xij �

Pp
h¼1 gihfhj

sij

�2

(6)

kX � GFk2
F denotes the Frobenius norm of E and s which is

the known matrix of error estimates.
These error estimates (s) of individual data points are

used to determine the weights of the least square fit on the
data matrix. The G (source contributions) and i (source



Fig. 1. Modeling domain and observation stations.
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profiles) are determined so that the Frobenius norm of E
divided by s at each time step is minimized.

The PMF output also produces a matrix called Explained
Variation (EV), which summarizes the relative importance
of each factor in explaining the variability of different
species in the PMF input; i.e., a large EV value of a species in
a factor indicates that this particular factor explains a major
portion of that species variability. EV is represented as
a matrix of dimensions pþ 1 by m (similar to F matrix
dimension but with one extra row (pþ 1)), which is
a measure of how much variation in a species remains
unexplained by the PMF solution. The EV values range from
0 (no variance explained) to 1 (100% variance explanation).
PMF modeling guidelines suggested that if any value on the
(pþ 1)th row exceeds 0.25, it indicates that species corre-
sponding to that row is practically not explained. The
details of the EV calculation are found elsewhere (Juntto
and Paatero, 1994; Lee et al., 1999; Paatero, 2000). In this
study, the input variables used in the PMF analysis are
assimilated monthly mean AOD values of SO4, BC, OC,
coarse mode sea salt (SSC), fine mode sea salt (SSF), coarse
mode dust (dust C) and fine mode dust (dust F) obtained
from the four-year model simulation. The data error esti-
mates were assumed to be 25% of the model predicted AOD.
The sensitivity of the PMF solution to this error assumption
was not evaluated and may be assessed in future studies.
The PMF solution was obtained by trial and error until
physically realistic sources were obtained, while simulta-
neously minimizing Q value as the principal criterion. The
total AOD was regressed against the G matrix to obtain the
source profiles (AOD ratio) and contributions (AOD) in
terms of AOD units. The PMF results obtained for two
different sites are described in Section 3.4.

3. Results and discussion

3.1. Case study: analysis for April 2005

To illustrate the assimilation procedure and to evaluate
its impact on aerosol distributions we first discuss the
assimilation results conducted for the month of April 2005.
The spring months (March, April, May) are a good time to
study aerosol characteristics in Asia because of high aerosol
loading. Several experimental field campaigns such as ACE-
Asia, TRACE-P, INDOEX, ABC-EAREX and PACDEX have been
launched during this time period to study the continental
Asian aerosols and their outflow (Ramanathan et al., 2001a,
b; Carmichael et al., 2003; Huebert et al., 2003; Stith et al.,
submitted for publication). The episodic emissions of
mineral dusts and other aerosols from biomass burning in
the spring season provides another motivation to study
assimilation during this time as the emissions for these
sources are highly uncertain. April 2005 was used to test our
daily data assimilation technique. Fig. 1 shows the STEM
modeling domain used in this study and also shown are six
AERONETstations (spanning across the domain), where AOD
data was available for more than twenty days in April 2005.
Fig. 1 also shows the location of the two ABC sites where
aerosol mass measurements were available for April 2005.

Fig. 2 shows the time series of assimilated AOD at the
AERONET sites along with the STEM modeled background
AOD. The figure also shows the time series of the MODIS
data used in the assimilation and the AERONET AOD. These
AERONET AOD data are independent observations, since we
do not integrate them within the MODIS data, and thus can
be used to evaluate the predicted values. For this run (Run
1) the values of the tunable parameters in Eqs. (3) and (4)
are as follows: 3o¼ 0.04, fo¼ 0.5, 3m¼ 0.0, fm¼ 0.5 and
lxy¼ 50 km. Analyzing Fig. 2 it is seen that the daily
assimilation of AOD using optimal interpolation improves
the model predictions. The background model predictions
were generally over predicting the observations, which the
assimilation corrects for and brings the AOD values after
assimilation closer to the AERONET observations. The
temporal coverage of the MODIS observations at a given
point range from w30 to 70% for the month shown. Yet the
information content in the surrounding geographical areas
is significant as the neighboring grid cells information gets
propagated to the current grid cell at a later time through
the assimilation. This is illustrated for the results at Hani-
maadhoo, where the assimilation results in a significant
reduction in predicted AOD at the beginning of the month,
where the site specific MODIS AOD had limited temporal
coverage. The assimilated AOD matches closely with the
independent AERONET values as shown in the figure. A
significant limitation of the assimilation technique is
shown under conditions where the MODIS AOD values
have large errors (as evaluated against the AERONET AOD)
as illustrated at Mukdahan. The assimilation forces the
predictions to better match the MODIS observations, which
differ significantly from the AERONET observations. This
problem can be reduced by correcting the MODIS values
using AERONET data before assimilation (as is done for the
long-term assimilations discussed in the next section).

We also evaluated the impact of the assimilation of AOD
on the prediction of particulate matter (PM) mass
concentrations at the surface. PM mass data is available
from the Atmospheric Brown Cloud (ABC-project) at two
sites in Asia. The two ABC observatories are located at
Kathmandu, Nepal, and Hanimaadhoo, Maldives. The
impact of the assimilation of MODIS AOD on the prediction
of PM2.5 mass (sum of modeled sulfate, BC, OC, fine mode



Fig. 2. Comparison of AERONET, MODIS, STEM background and assimilated AOD.
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dust and fine mode sea salt) at Hanimaadhoo and Kath-
mandu is shown in Fig. 3. The figure shows that the
assimilation results in PM2.5 mass predictions that are
much closer to the observed values. At Hanimaadhoo, the
STEM-assimilated model was able to match the observa-
tions well after the first few days. During the first few days
there were no MODIS data over Hanimaadhoo and the
surrounding areas were laden with high dust in the back-
ground field. The STEM-assimilated Kathmandu PM2.5

concentration also shows an overall improvement
compared to the background model results.

The information obtained in the fine mode AOD fraction
is important as it enables separate adjustments of the fine
and coarse modes. The ratio of predicted fine mode AOD to
predicted coarse mode AOD is shown in Fig. 4 for Hani-
maadhoo and Kanpur, along with the observed AERONET
angstrom exponent, a qualitative indicator of aerosol size.
The impact of including the fine mode component in the
assimilation is shown at Hanimaadhoo by comparing the
results after assimilation to the predicted ratios for the
background simulation. The temporal variations in the
assimilated fraction of fine mode AOD ratios are shown to
closely match the variation of the relative amounts of fine
and coarse aerosol as reflected by the angstrom exponent.

A series of sensitivity simulations were performed to
evaluate the effectiveness of the assimilation method and
the results are summarized in Table 1. Comparing the root
mean square error (RMSE) of the background and the
assimilated model runs it is seen that the assimilation
significantly reduces the errors (i.e., the RMSE was reduced
by w50%). A large uncertainty in predicted AOD is associ-
ated with the estimation of the size-resolved dust emis-
sions. In the base assimilation run, dust in both the fine and
coarse mode was adjusted using coarse mode AOD, to
account for the large uncertainties in absolute dust emis-
sions and the fine mode fraction in the emissions. An
additional assimilation was done where fine mode dust
was adjusted along with BC, sulfate and OC, using the



Fig. 3. Comparison of PM2.5 mass at ABC stations.
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MODIS fine mode fraction (Run2) and the RMSE in the
assimilated results at individual sites ranged from 0.063 to
0.710. The impact of the assimilation of MODIS fine mode
AOD on the prediction of total AOD was also evaluated by
performing an assimilation using only the total AOD. The
impact on RMSE at the various sites varied from 0.064 to
0.722. But as discussed above the fine mode information
has a big impact on predicted PM2.5 mass.

Three different sensitivity tests (Run4–Run6) were run
that focused on the sensitivity of the results to the assimi-
lation parameters. The first sensitivity test assumed the
fractional error in the model to be equal to 0.1 instead of the
0.5. The second test was run assuming the fractional error in
the model to be equal to 1.0. The third sensitivity test
Fig. 4. Comparison of observed angstrom exp
increased the values of lxy, the horizontal correlation length
scale for errors in the model fields to 150 km, which is three
model grid cells. The results show that the differences in the
magnitude of RMSE values were not significantly different
within the range of parameters explored. Generally the
results of the RMSE for the different assimilation algorithm
varied by w10% at different AERONET stations.

As discussed above and in Adhikary et al. (2007) the
online dust emissions model used in STEM tends to over
predict dust emissions (especially in South Asia),
resulting in a systematic high bias in dust. One method
to deal with this is to apply a uniform bias correction to
the predicted dust. (A preferred method is to develop
a more accurate dust emissions model and that is the
onent with modeled aerosol size ratio.



Table 1
Change in model predicted daily AOD values at the AERONET sites from
different data assimilation runs

No
assimilation

Run1 Run2 Run3 Run4 Run5 Run6

1 Mussafa 1.624 0.689 0.710 0.722 0.703 0.706 0.635
2 Kanpur 0.666 0.168 0.158 0.169 0.178 0.189 0.175
3 Hanimaadhoo 0.249 0.065 0.063 0.064 0.088 0.065 0.063
4 Mukadhan 0.317 0.223 0.187 0.263 0.115 0.256 0.344
5 XiangHe 0.496 0.502 0.518 0.499 0.499 0.496 0.543
6 Gosan 0.908 0.509 0.373 0.461 0.433 0.538 0.514

Average of
all 6 stations

0.710 0.359 0.335 0.363 0.336 0.375 0.379

Run1: base data assimilation run; Run2: data assimilation with dust
concentration scaled from fine mode fraction comparison; Run3: data
assimilation without separation of fine mode/Coarse mode fraction from
MODIS; Run4: sensitivity run changing the value of fm¼ 0.1 and rest as
base case; Run5: sensitivity run changing the value of fm¼ 1.0 and rest as
base case; Run6: sensitivity run changing the lxy to 150 km and rest as base
case.
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long-term goal.) However, the assimilation of the MODIS
AOD provides a means to bring in spatial and temporal
variability. This is shown in Fig. 5, where predicted AOD
at Kanpur is shown for the background simulation, and
for simulations using a bias correction and assimilating
MODIS AOD. Dust bias was corrected by constraining
modeled dust concentration with a yearlong aerosol
mass observations obtained from the ABC-project. Details
about this bias correction are discussed in Adhikary et al.
(2007) but it resulted in reducing the dust emission
coefficient by 3.25 for South Asian application. Bias
correction does a good job in improving the overall
predictions, but must maintain the variability captured
in the background model (which is quite good as indi-
cated by the comparison of the observed and predicted
temporal variability). However, the assimilation enables
Fig. 5. Comparion of STEM background, bias corre
a closer temporal and spatial representation of aerosol
distributions. This is shown for the period 6–10 April.
The background model captures the main features of
a dust event, but the impact of this event at Kanpur is
w2 days too late. The assimilation results adjust for dust
upwind of Kanpur that were underestimated in the
forward model, resulting in a good correspondence of
the AOD temporal trends. Note that this happens even
though the MODIS observations are limited at Kanpur
during this period as shown in Fig. 2.
3.2. Regional AOD distributions

Fig. 6 shows the mean annual total and fine mode
AOD averaged over the years 2001–2004. For these
results the monthly assimilation algorithm with the base
run (Run1) parameters was used. Also shown are the
mean MODIS with AERONET corrections total- and fine
mode AOD (i.e., the data used in the assimilation). The
regions with the highest mean AOD from the MODIS data
are located over the heavily polluted regions (including
eastern China and Ganges valley of India), around the
desert regions of western China and the Middle East, and
the areas with large amounts of biomass burning (e.g.,
South East Asia). The assimilated AOD distributions
follow closely these general patterns. The largest differ-
ences were seen in the desert regions where there is
a lack of MODIS data to constrain the predicted values.
The uncertainties of AOD results over these desert
regions are very high because of lack of MODIS/AERONET
observations. As discussed previously, dust emissions are
highly uncertain and vary by a factor of 3–5 times from
model to model (Bates et al., 2006). A previous study by
Adhikary et al. (2007) found that the STEM model was
over predicting the dust concentration by a factor of 3.25
cted and assimilated AOD with observation.
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Fig. 6. Four-year averaged MODIS and assimilated AOD.
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over the South Asian region. Future assimilation studies
will need to use MODIS AOD retrieved using the ‘Deep
Blue Algorithm’ as published studies have shown this
retrieval is able to obtain AOD over desert surfaces (Hsu
et al., 2006).

A comparison of the fine mode AOD is also shown in
Fig. 6. Only the regions over the oceans are shown to
compare the results more easily. Furthermore, the MODIS
fine mode fraction data was available only over ocean
regions for the four-year period simulated. The mean
assimilated fine mode fraction matches closely the spatial
distribution of the MODIS values, but with a tendency to be
higher (e.g., the Arabian Sea region with assimilated fine
mode AOD exceeding 0.2 in South Asia extends w5� further
south than the MODIS values).

The inter-annual variability in data assimilated fine
mode AOD is shown in Fig. 7a, expressed in terms of
coefficient of variation (CoV) (standard deviation of the
annual means divided by the four-year mean). The
regions with the highest variability were found where
aerosol emissions are highly variable (i.e., over dust
source regions and regions with active biomass burning).
Both sources have strong inter-annual signals in their
emissions. Significant inter-annual variability is also
shown in the aerosol outflow regions (e.g., off the coast
of Yellow Sea of China), which reflects inter-annual
variability in upstream emissions and in removal rates
due to variability in precipitation. Some high AOD
regions have low variability. For example, the Ganges
valley region over India shows a low CoV, indicating the
strong aerosol layer is persistent over this region in all
the years. This result is consistent with another study
which showed a strong and persistent aerosol loading
over this region in the winter months (Gautam et al.,
2007), and which is shown clearly in the calculated CoV
for the December, January and February (DJF) months
(Fig. 7b). In Fig. 7a, the desert regions of China and
Mongolia show high seasonal CoV mainly because of fine
mode dust contribution to AOD. The availability of
MODIS AOD over these regions varies with year and
season. However, the CoV is low for desert regions of the
Middle East mainly due to lack of MODIS data
throughout the 2001–2004 periods. The high CoV over
the South East Asia reflects seasonal emissions, domi-
nated largely by biomass burning, and meteorology
dependant removal processes.

Absorbing aerosols play an important role in climate
change and their relative importance varies by region
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Fig. 7. Inter-annual and inter-annual DJF months covariance of fine mode AOD.
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(Ramanathan et al., 2007). This is shown in Fig. 8a,
where the geographical distribution of the four-year
average BC to SO4 AOD ratio is presented. The highest BC
ratios occur over India and South East Asia. These
patterns reflect the underlying emissions as shown in
Fig. 8b. The high BC ratios over South Asia reflect the
large contribution of biofuel use in the Indian subcon-
tinent, while the high BC ratios over South East Asia are
indicative of strong open biomass burning.

The spatial variability in the aerosol distributions is
shown in Fig. 9, where four-year averaged vertical cross
sections at a fixed latitude and longitude are presented.
The two chosen cross sections slice through the middle
of the polluted regions of mainland China and the Indian
subcontinent. These cross sections are also chosen to
supplement the discussion on radiative impact calcula-
tions presented in a companion paper by Chung et al.
a

Fig. 8. (a) Ratio of BC to sulfate AOD distributi
(submitted for publication). Fig. 9a shows the longitu-
dinal gradient along 35N for mineral dust AOE. The
highest dust AOE can be found at longitudes near the
Taklimakan and Gobi deserts (80–100E) and the deserts
of central Asia (50–60E). Elevated dust plumes are shown
off mainland China at 126–133E transported from source
regions and reaching altitudes up to w8 km. Fig. 9b
shows the BC AOE at 35N latitude (sulfate AOE shows
similar structure (not shown)). BC-AOE has a different
longitudinal gradient and vertical structure. Most of the
BC-AOE is towards the Eastern China coast, South Korea
and Japan, reflecting the geographical distribution of
anthropogenic BC emissions. Fig. 9c shows the dust-AOE
along 76E longitude. The results show that the dust AOE
increases towards the north, reflecting emissions from
Western India and central Asia. Fig. 9d shows the vertical
structure of the sulfate AOE along 76E. High values occur
b

on and (b) ratio of BC to SO2 emissions.



Fig. 9. Vertical structure of aerosols showing latitudinal and longitudinal gradients.
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over the source areas (e.g., 30N). In the outflow region
(south of 20N) the location of the maximum extinction
occurs at altitudes 1–3 km, reflecting that the transport
off the continent generally overrides the marine
boundary layer.

3.3. Seasonal AOD distributions

The temporal variability of the aerosols at Hani-
maadhoo, Maldives, and Gosan, Korea, for the 2001 and
2004 periods is shown in Figs. 10 and 11. These two sites are
ideal to study the outflow of the Indian subcontinent and
East Asia, respectively. Fig. 10a shows the time series of the
vertical profiles of dust AOE along with the total column
integrated dust AOD at Hanimaadhoo. The contribution
from dust to AOD can reach up to w0.2, and shows
significant seasonal and inter-annual variability. The
vertical profiles of dust AOE at Hanimaadhoo show signif-
icant seasonal changes in transport altitudes, with peak
values in the July periods, with major contributions at
altitudes ranging from 3 to 7 km. In contrast the anthro-
pogenic aerosol loading at Hanimaadhoo, illustrated by the
plots of sulfate AOE (BC and OC aerosols show similar
trends) in Fig. 10b, shows that the sulfate loading is mainly
at 3 km and lower altitudes, and with a different season-
ality (peak in the dry season (JFM)). These differences in the
dust and sulfate features reflect the different source regions
and transport pathways for the wind blown dust and
anthropogenic aerosols, as discussed in Adhikary et al.
(2007).

Fig. 11 shows dust and BC AOE and AOD at Gosan. In
general dust and BC have a similar seasonal cycle, with peak
values in the spring, which is the strongest outflow period.
At Gosan dust is transported at high altitudes, up to 9 km,
while BC is typically confined mainly below the 4 km. Gobi
and Taklimakan deserts in China, which are primary dust
source regions impacting the atmosphere over Gosan, are
further west from anthropogenic pollution sources located
mostly in Eastern China. Furthermore the dust regions are at
higher elevations than the bulk of the anthropogenic
emissions which are nearer to the coast. Thus the results in
Fig. 11 separating the vertical distribution of the dust layer
from the pollution layer is as expected, with the dust
outflow at higher altitudes than pollution aerosols such as



Fig. 10. Vertical structure and column integrated AOE at Hanimaadhoo.
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BC. This separation of dust and pollution layers has also been
observed using aircraft campaigns (Seinfeld et al., 2004;
Stith et al., submitted for publication). However, since the
assimilation algorithm does not constrain the vertical
profile, the resulting vertical profiles are determined by the
underlying chemical transport model.
Fig. 11. Vertical structure and colum
3.4. Factor contribution: forward and receptor modeling

The results presented above in Figs. 11 and 12 indicate
that the total AOD and the contributions from various
species vary significantly by region and season. To help
synthesize and characterize the contributions to AOD in
n integrated AOE at Gosan.



Fig. 12. PMF modeled aerosol profiles and contributions at Hanimaadhoo.
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a particular region, we explored the application of PMF to
the modeled constrained distributions to see if we could
identify major source contributions. The application of PMF
to model values provides a means to search for factors that
can represent the source, transport and removal processes
which link emissions, aerosol distributions and AOD. The
four years of monthly mean AOD by species and size was
treated in the PMF analysis. The general PMF guidelines
including looking at Q and EV values and interpretability of
the resolved sources were adhered to in obtaining the PMF
solution. After careful examination of the various factor
combinations, a three-factor solution was considered best
to explain the variation in AOD while yielding physically
meaningful factors. For example, a megacity located far
from oceans and sand desert should not have a high factor
loading of dust and sea salt as the factors that primarily
explain the variation in AOD. We focus the discussion of
PMF analysis on Gosan and Hanimaadhoo as these loca-
tions are influenced by the continental outflow from the
Indian subcontinent and East Asia; thereby providing an
opportunity to study the influence of diverse emission
sources. We show here the averaged four-year contribu-
tions in order to better ascertain the influence of
seasonality.

To illustrate, the resulting AOD factor profiles and
contributions are displayed in Figs. 12 and 13. The
output is arranged in a multi-panel plot format. The top
three left and right panels in Figs. 12 and 13 correspond
to the AOD profiles and contributions, respectively. The
fourth panel in both figures shows the aggregate of
profiles and contributions. The bottom left panel shows
the variation explained in each species by the three
factors. The bottom right panel shows a comparison of
the PMF modeled AOD (which is sum of the individual
factor contributions) with the total AOD from the
assimilated STEM model.

The three-factor PMF solution for Hanimaadhoo is
shown in Fig. 12. Factor 1 was identified as continental
anthropogenic pollution factor (denoted by blue color) due
to the strong association of SO4, BC and OC in the profile
(top left panel) and accounts for majority (w80%) of the
variation in BC and OC along with a substantial portion of
variation in SO4 (bottom left panel). This factor peaks
during the months of January and February (top right
panel) consistent with the results of earlier studies (Ram-
anathan et al., 2007; Stone et al., 2007). Similarly we
identified Factor 2 as mixed factor (denoted by green color)
associated with OC, sea salt and dust (in second left panel)
and explains most of the variation of sea salt species. This
mixed factor shows a seasonal cycle with maximum
contribution in July and August (second right panel). This
period represents long-range transport from low latitudes,
with long stretches over the sea, and generally from the
areas influenced by outflow from Africa. This is in contrast
to the seasonality of the first factor that reflects outflow
from the Indian subcontinent. Like wise Factor 3 (denoted
by red) was attributed to dust factor due to high dust
loading (in third left panel) along with minor contributions
of SO4 and accounts for most of the variation in dust. This
factor peaks occur through the months of May through
August (third right panel), reflecting transport conditions
bringing dust from the middle-east and the western
regions of South Asia. A detailed discussion of the transport
patterns impacting aerosol composition at Hanimaadhoo is



Fig. 13. PMF modeled aerosol profiles and contributions at Gosan.
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presented by Adhikary et al. (2007). The PMF three-factor
model explains more than 80% of the variation in the indi-
vidual species as evident by the low values (<0.2) of unex-
plained variation of each species, denoted by yellow color
(bottom left panel). This PMF solution explains 90% of the
assimilated STEM total AOD as seen in the bottom right panel.

Fig. 13 shows the PMF results for Gosan. The following
factors were identified: anthropogenic pollution source
(denoted by blue color) dominated by sulfate, BC and OC,
a mixed factor (denoted by green color), and a distinct dust
factor (denoted by red color). The aerosol distributions at
Gosan are dominated by pollution sources from East Asia,
and 80% of the variation in sulfate, BC and OC is explained
by the anthropogenic pollution sources (top left panel). The
pollution factor also shows a significant contribution
throughout the year, with maximum values in the winter
and spring (top right panel). The variations within this
period reflect changes in transport patterns, as well as
removal processes (e.g., the decrease in AOD in May due to
a springtime precipitation feature that occurs in this region
at this time). The mixed pollution factor comprising sea
salt, SO4 and dust explains w90% of the sea salt contribu-
tion to AOD, and its maximum contribution is in the
summer months reflecting southerly transport conditions
and aerosol distributions of lower latitude marine condi-
tions. The sulfate contribution in this factor reflects the
contribution from volcanic emissions to the south
(including those from Kyushu, Japan). Most of the variation
in the fine and coarse mode dust is explained by the dust
factor (bottom left panel), which shows a distinct peak
around the months of February through May (third right
panel), reflecting the long-range transport of dust occur-
ring due to springtime dust events. The total AOD calcu-
lated by PMF matches closely with the assimilated STEM
total AOD as shown in the bottom right panel. This PMF
solution could explain approximately 90% of the variation
in each species as shown by the low values (<0.1) of the
unexplained variation (yellow) in the bottom left panel.

Even though similar factors were identified at Gosan
and Hanimaadhoo the composition of the factors varies
significantly at the two locations. For instance, the dust
factor at Hanimaadhoo includes traces of sulfate along with
dust contributions. In contrast at Gosan, the dust factor is
dominated by dust species. Differences can also be found in
the composition of the anthropogenic pollution and mixed
factors at the two locations. For example, the BC and OC
contribution to the anthropogenic pollution factor profile is
smaller at Gosan, while it has a more significant contribu-
tion at Hanimaadhoo. This is expected behavior since
Hanimaadhoo is predominantly influenced by the conti-
nental outflow from the Indian subcontinent where the
carbonaceous aerosol to SO2 emissions are higher than in
China as shown in Fig. 8b. Overall these differences in the
factors reflect differences in regional emissions.

4. Summary

A framework for optimal interpolation of satellite data
was used along with the STEM model to produce aerosol
distributions in Asia for the four-year period 2001–2004
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and April 2005. Aerosol optical depth and fine mode frac-
tion information (where available) retrieved from the
satellite-based MODIS instrument was used in the assimi-
lation to produce AOD and aerosol mass distributions. The
daily assimilation results were compared to AERONET data
within the modeling domain and the assimilation scheme
was shown to produce fields that more closely matched the
observations. The assimilation of AOD was shown to
improve the predictions of surface aerosol mass by
comparison with independent PM mass measurements
from South Asia. The assimilation of fine mode fraction of
AOD was shown to significantly improve the prediction of
PM2.5 at the surface.

The temporal and spatial features of the four-year con-
strained aerosol distributions were analyzed. The regional
distributions showed high aerosol loadings over regions
with large anthropogenic emissions, including East Asia
and the Ganges plains, areas with large open biomass
burning (including South East Asia), and over the desert
regions where wind blown soil emissions occur, including
large regions in China and the middle-east. Dust emissions
are highly uncertain and are not well constrained in the
current data set due to a lack of AOD observations over the
desert regions. The inter-annual CoV calculated from the
data assimilated four-year AOD shows that most of the
variance lies in areas dominated by wind blown dust and
biomass burning. Analysis of the four-year averaged
vertical structure of dust and anthropogenic aerosols show
that dust is generally present at higher altitudes, while
pollution at lower levels. The model is able to capture the
observed trends of long-range aerosol transport when
analyzing the longitudinal and latitudinal vertical cross
sections.

Source receptor modeling was also conducted to help in
identifying factors affecting two receptor sites Hani-
maadhoo and Gosan in Asia. The three-factor PMF analysis
at these two sites was able to capture the observed seasonal
anthropogenic and dust loadings. The PMF results were
also able to identify strong carbonaceous aerosol signal at
Hanimaadhoo in contrast to Gosan representing the
signature of different emissions outflow region.

The 2001–2004 year’s three dimensional aerosol mass
loadings from our data assimilated chemical transport
model were used as inputs in calculating radiative forcing
within the same modeling domain. The results of radiative
forcing calculations and impacts over Asia are described in
a paper by Chung et al. (submitted for publication).

The results from this study show that AOD assimilation
can help reduce the uncertainty in the calculated aerosol
distributions. The results also point out areas where the
background model needs improvement. One important
example is the improvement in the dust emissions algo-
rithm, which overestimates dust emissions, especially in
South Asia. The procedure will also benefit from improved
AOD retrievals. For example, MODIS products over the
desert and other bright reflecting surface areas such as the
‘Deep Blue’ based retrieval should greatly assist in reducing
the uncertainty over the desert regions. In addition, the
retrieval of additional information other than size that can
be used to distinguish between aerosol components (such
as SSA) will also improve the assimilation and resulting
aerosol distributions. This information should also be used
to weight the assimilation factor between the different fine
mode AOD fractions instead of linear adjustment as was
done in our study. In future, PMF results at various different
receptor locations showing factor profiles and contribu-
tions to the total observed AOD should help constrain the
assimilation model further in differentiating between
various fine mode aerosols.
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