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A dynamical model is presented for the observed strong zonal circulation 
within the stratosphere of Venus. The model neglects rotational effects a~d con- 
siders a compressible and radiating atmosphere. I t  is shown that diurnal ra~liative 
heating is negligible within the lower stratosphere, a region below 85km, while 
observational evidence for the strong zonal circulation pertains to the lower 
stratosphere within which a direct thermal driving for the circulation is absent. 
The analysis, however, suggests that propagating internal gravity waves generated 
by diurnal solar heating of the upper stratosphere induce mean zonal velocities 
within the upper and lower stratosphere. 

Considering the linearized equations of motion and energy, and following 
Stem's ( 1971 ) analysis for an analogous problem, it is shown that the zonal velocity 
induced by internal gravity waves is retrograde in direction, a result which is in 
agreement with observation. The nonlinear equations of motion and energy are 
then solved by an approximate analytical method to determine the magnitude of 
the zonal velocity. This velocity increases from zero at the tropopause to about 
200msec -~ at the 85kin level. The velocity near the uv-cloud level compares 
favorably with the observed value of 100msec-L 

I. INTRODUCTION 

The recent  Mariner  I0  resul ts  (Murray 
et al., 1974) confirm earlier g round-based  
observa t ions  concerning the  re t rograde  
ro t a t i on  wi th in  the  a tmosphe re  of  Venus 
(e.g., Boyer ,  1973; Car le ton and  Traub ,  
1972), as well as in t e rp re ta t ions  of  the  
Soviet  Venera  d a t a  (Ainsworth and  Her -  
man ,  1972). Most o f  these  observa t ions  
pe r t a in  to  the  uv-c loud level, which is 
located  wi th in  the  s t r a tosphere  o f  Venus 
be tween  a pressure  level o f  rough ly  10 m b a r  
to  4 0 m b a r  (Alnsworth and  H e r m a n ,  1972 ; 
Car le ton and  Traub ,  1972). These ob- 
servat ions  indica te  t h a t  a t  least  a por t ion  
of  the  a tmosphe re  of  Venus is in a s ta te  of  
super  ro t a t ion  wi th  an  angula r  ve loc i ty  of  
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abou t  s ix ty  t imes  t h a t  of  the  p lane t ;  the  
mot ion  being re t rograde  and  predomi-  
na t e ly  zonal. The  pr incipal  purpose  of  the  
presen t  s t u d y  is to  inves t iga te  the  pheno-  
menon  b y  which the  a tmosphe re  acquires  
th is  ne t  angula r  m o m e n t u m .  

Al though  models  suggest ing var ious  
mechan i sms  have  been proposed  to  ex- 
p la in  th is  angular  m o m e n t u m  acquis i t ion 
(e.g., Schuber t ,  1969; Schuber t  and  Young,  
1970; Thompson ,  1970; Malkus,  1970), the  
only  analyses  which are d i rec t ly  appl icable  
to Venus are those of  Gierasch (1970), and  
Young  and  Schuber t  {1973). These are 
based  upon  Schuber t  and  W h i t e h e a d ' s  
(1969) proposa l  t h a t  the  re t rograde  ro- 
t a t i on  is due to  t h e r m a l  forcing b y  the  
periodic overhead  mot ion  of the  sun. 
Schuber t  and  Whi t ehead ' s  model  requires  
a large t he rma l  forcing to  be  presen t  wi th in  
the  a tmospher i c  region subjec t  to  the  super  
ro ta t ion ,  bu t  as will be  shown shor t ly ,  
realist ic considerat ions of  the  a t m o s p h e r e  
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of Venus reveal that  diurnal thermal 
forcing within the entire lower stratosphere 
(which contains the uv clouds) is negligible. 

We will now describe the response to 
diurnal radiative heating within the strato- 
sphere of Venus, and for this purpose we 
adopt  the radiative model of Cess and 
Ramanathan (1972). The model is des- 
cribed in detail by  Cess and Ramanathan, 
and only the results will be summarized 
here. For the purpose of the present work 
we shall assume that  the atmosphere of 
Venus consists solely of carbon dioxide. 
Considering infrared transmission due to 
the 15~m C02 band, while solar absorption 
results from near infrared bands of CO2, the 
.net radiative heating is expressed in terms 
of the dimensionless strong-line parameter 

3~ 0 S H  p2 
~= Ao d , (1) 

where S and A 0 denote the intensity and 
bandwidth parameter, respectively, for the 
15/~m band, V0 is the mean line half-width, 
d denotes the mean line spacing, P is 
pressure and H the scale height. 

I t  has been shown (Cess and Raman- 
athan, 1972) that  most of the near infrared 
solar absorption is confined to a region for 
which ~ <1.  To consider the diurnal 
response of the stratosphere, a parameter 

was defined as the ratio of the radiative 
response time of the atmosphere to the 
rotation time of the planet. For the upper 
stratosphere (~ < 1), e was shown to be 
equal to 0.084, whereas E= 31 for the 
lower stratosphere (~>> 1). This small 
value for , for the upper stratosphere 
indicates a very short atmospheric response 
time compared to rotation time, and hence 
large diurnal forcing is to be expected. On 
the other hand, the large value of ~ for the 
lower stratosphere suggests that  this 
region will not respond to diurnal changes 
imposed by  higher atmospheric regions. 
Based on these results, Cess and Raman- 
athan (1972) have suggested that  a steady- 
state temperature exists within the lower 
stratosphere, while the temperature is 
time dependent but  independent of altitude 
within the upper stratosphere, and these 
two regions are connected by  a transition 
region. 

From (1) it readily follows that  $ =  
4 × 106 p2, with P in arm, such that  $ = 
350 at the 10mbar level, and clearly the uv 
clouds are located within the lower 
stratosphere for which there is no diurnal 
temperature change. The upper strato- 
sphere, corresponding to $ < 1, extends 
upwards from a pressure level of roughly 
l mbar, the altitude of this level being 
85km. Hence diurnal thermal forcing is 
essentially confined to an atmospheric 
region above an altitude of 85km; i.e., well 
above the uv clouds. 

Since the uv clouds constitute the level 
of the observed super rotation, then from 
the preceding radiative transfer consider- 
ations we conclude that  the zonal circu- 
lation cannot adequately be explained by  
the analyses of Gierasch (1970), and 
Young and Schubert (1973), which are 
based upon Schubert and Whitehead's 
(1969) proposal, since these models re- 
quire a direct thermal forcing within the 
lower stratosphere. The analyses of Gier- 
asch, and Young and Schubert, employ a 
diurnal equilibrium profile which has a 
large day-to-night temperature difference 
within the lower stratosphere, but  this is 
inconsistent with our previous reasoning. 
To produce a strong zonal circulation 
within the lower stratosphere, a mech- 
anism must exist by  which diurnal solar 
heating within the upper stratosphere can 
induce a circulation within the lower 
stratosphere. 

One very plausible mechanism is the 
excitation of internal gravity waves within 
the upper stratosphere, for it is well known 
from terrestrial tidal theory (Chapman and 
Lindzen, 1970) that  diurnal solar heating 
excites internal gravity waves, and that  
these waves can propagate away from the 
region of excitation into stably stratified 
regions. The model envisaged is as follows : 
Diurnal solar heating of the upper strato- 
sphere generates internal gravity waves 
which propagate away from the region of 
excitation into the lower stratosphere and 
upper atmosphere. Propagation of waves 
results in a net momentum addition within 
the region subject to solar heating (Stern, 
1971), with a corresponding transport of 
mean horizontal momentum (Booker and 
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Bretherton, 1967), and consequently the 
mparting of mean winds, to the lower 
stratosphere. The strength of the winds 
tepends, among other factors, on the mean 
~nergy of the wave. This is expected to be 
large, since the slow rotation of the planet 
permits a strong thermal response within 
bile upper stratosphere. 

The purpose of the present paper is to 
investigate the strength of zonal winds 
induced by  the mechanism described 
above. A similar mechanism for imparting 
mean motions has recently been proposed 
by Stern (1971) in a paper intended as a 
reinterpretation of the moving flame 
experiment of  Schubert and Whitehead 
(1969). Stern shows that  propagating 
gravity waves can impart mean motions to 
the fluid. Fels and Lindzen (1974) have 
also recently considered the generation of 
mean motions within the atmosphere of 
Venus by  propagating gravity waves. 
While their calculations do not predict 
the observed circulation, Fels and Lindzen 
schematically describe a possible mecha- 
nism by  which the observed wind speed 
could develop. 

II.  MATHEMATICAL MODEL 

Restricting the analysis to equatorial 
regions, the Coriolis force is deleted from 
the equation of motion, and a two-dimen- 
sional cartesian coordinate system is 
adopted. The Sun is assumed to move in 
the negative x-direction with a velocity 
c = 4 m s e e  -l ,  where x is a horizontal 
coordinate measured along the latitude. 
The hydrostatic assumption is made 
which permits us to write the conservation 
equations in pressure coordinates, with 
h = - l n ( P / P o ) ,  o~ = dh/dt, and • = gz(x,h, t), 
where t is time, Po the pressure at the lower 
boundary of the upper stratosphere, g the 
gravitational acceleration, and • the 
geopotential. 

The approl0riate conservation equations 
for the present s tudy are identical to those 
derived by  Gierasch (1970). The first of 
these is the Reynold's stress equation 

, O V ' \  v 0 ( 1 0 U ~  -gY/= (2) 

where < > denotes a horizontal average, U 
is the zonal velocity in the x-directlon, v is 
viscosity, and the field variables have 
been separated into a horizontal and time 
averaged part  plus a perturbation part;  
e.g., U = U + U'. The horizontally aver- 
aged energy equation is 

+ G / / =  0, (8) 

where T is temperature, /~ the gas con- 
stant, Cp the specific heat at  constant 
pressure, and Q is the net radiative 
heating per unit mass. Following the same 
reasoning as presented by  Gieraseh (1970), 
the left side of Eq. (3) is small compared to 
0(1), such that  to first order Eq. (3) 
yields 0 = 0. 

The diurnal radiative heating process 
has been described in the previous section. 
To simplify the present analysis, the 
transition region between the upper and 
lower stratosphere will be replaced by  a 
transition level which is arbitrarily chosen 
to be the level for which ~ = 1, such that  
P o = 5  × 10-%tm. Denoting the lower 
and upper stratospheres by  regions 1 and 
2, the heating functions for the two regions 
follow from Cess and gamana than  (1972) 
to be 

Q2 = (Q/E) (To2/960) [~F(/2 + x/a) - ~b], 
Q, --= 0, (4) 

with 

¢ = exp ( - 9 6 0 / T ) / e x p  (-960/To), 
= 179 ~ exp (960/To) , 

Y(Qt  + x/a) = [cos (/2t + x/a)] 1/2 
for cos (/2t + x/a) > O, 

F(Y2t + x/a) = 0 for cos (Y2t + x/a) < O, 

where a is the planetary radius (a = 6.1 × 
l0 s cm), ~ is the ratio of radiative response 
time to rotation t ime, /2  is the rotational 
velocity of the planet, 8 is the planetary 
angle factor (8 = 4.23 × 10-s), and T o is 
the diurnally averaged temperature for 
region 2. 

Since ~)2 = 0 from the discussion follow- 
ing (3), then upon averaging (4) it follows 
that  S = 1/0.882 (Cess and Ramanathan,  
19.72), which yields T o =  164K. Recall 
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from the previous section that  the tempera- 
ture within the upper stratosphere is 
independent of altitude. For the steady 
state temperature profile within the lower 
stratosphere (region 1), results obtained 
from the Mariner 5 occultation experiment 
are adopted (Fjeldbo et al., 1971). The 
lapse rate within this region can satis- 
factorily be represented by  a constant 
value of dT/dz  = --4.5K/kin. The resulting 
temperature profiles for regions 1 and 2 
are illustrated in Fig. 1, while regions 3 and 
4 will be explained later. 

The remaining equations are the mean 
field equations which describe the pertur- 
bation quantities, and from Gierasch 
(1970), 

-OU" co, OU 0~" 
a U ' + u _ ~ _ +  a h =  a x '  (5) 8t 
0(/)' 
Oh 

= _RT', (6) 

O U " 0o/ 
0x + -~-  -- co" ---- 0, (7) 

a-i- 3- ax + + c . ]  . (s) 

The viscous diffusion term has been de- 
leted in (5), consistent with the argument 
of Gierasch (1970). A detailed discussion of 
the validity of the mean field equations to 

h O - -  

REGION 3 
UPPER ATMOSPHERE) 

REGION 2 
UPPER STRATOSPHERE 

d¥ ~-i .o 

REGION I ~ ~" = -4"S°K/km 

(LOWER STRATOSPHERE) 

--h 0 _ _  

REGION 4 ~ - ~  
(TRANSITION REGION) 

TEMPERATURE, °K 

FIG. 1. T h e r m a l - s t r u c t u r e  mode l  for  t h e  
a t m o s p h e r e  of  Venus .  D i u r n a l  v a r i a t i o n s  are  
r e s t r i c t e d  to  regions  2 a n d  3, whi le  regions  1 
a n d  4 a re  in  a s t e a d y  s t a t e .  

problems involving large mean winds is 
given by  Malkus (1970), and these equa- 
tions have been used extensively in pre- 
vious analyses (e.g., Schubert and Young, 
1970; and Young and Schubert, 1973) 
dealing with the Venus circulation. These 
equations can be justified somewhat if 
U'/G and o / / U  ~ 1. The results in Section 
IV will indeed verify this. 

I t  remains to describe the heating 
perturbation Q'. This is zero for region 1, 
and we need consider only region 2. As- 
suming further that  T ' / T  o ~ 1. then 

¢ -- 1 + (960/T02) T" 

within (4), while it is recalled that  3 -  
1/0.382. The solar absorption function 
F(x, t )  occurring in (4) is aperiodic, since 
it vanishes over half the period. However 
F(x, t )  may be separated into periodic 
terms with n harmonics using Fourier 
analysis, with the first harmonic term 
n =  1 being the diurnal heating term 
(Chapman and Lindzen, 1970). Considering 
only the diurnal term, Q" for region 2 may 
be written as (Ramanathan, 1973) 

Q" = QToaoRele  i(~'+x/a) - (ff2/~)T'l, (9) 

where a 0 = 7rT0/1290e, i = % / -  1, and Re 
stands for the real part  of a complex quan- 
tity. 

From (7) the stream function is defined 
a s  

u '  = e" (a¢ ' /ah ) ,  = ( lO)  

Since Q ' ~  e "at+x/a), (5)-(8) suggest that  
~b', T', and ~5" are separable, such that  we 
may let (Gierasch, 1970) 

+' ( ¢ ' ( h )  
T ' =  ~ " ( h ) } e  "''+:'/"), (11) 
+" {¢'(h)) 

where it is understood that  the real par t  
is to be taken, and ~', ~ '  and ~5" are 
complex quantities. 

Upon substituting (11)into (5)l(8), 

(d 2 Ym/dh 2) 3 -  km2(h) Yrn = FJm e-h/2, (12)  

while from (2), 

dV S I d Y *  _ , d Y . I  
----4Im Y:  ~ Y: -~- - I '  (13) 

where V = U/c, the subscript m refers to 
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he region, with m = 1 and m = 2 denoting 
egion 1 and 2, respectively, Im stands for 
'Imaginary quanti ty of",  and Ym* is the 
~omplex conjugate of Ym. Furthermore, 

r =  = e h/~ tm'lC, 
1 d V / d h  a I F 

kl2(h) 4 I + V  ~ ( 1 + V )  2' 

1 d V / d h  
G2(h)= 4 ( I + F )  

4 a 2 F 
(1 + F) (1 + $ - i/c)' 

J j  = O, 

J2 = iao/(1 + V) (1 + Y -- i /eL 

1 + 

"m = G / 
F = 1¢~1/c 2, 

S = He 2 Q/re, 

where T2--To,  H_o is the scale height 
corresponding_to T o (H o = 3.75km), and 
v o refers to T o and Po. The quanti ty a m 
is simply the static stability parameter, 
with a m > 0 signifiying stable stratification 
while a m < 0 is unstable. S is 2~ times the 
ratio of the visCOUS diffusion time across a 
scale height to the period of a thermal 
wave. 

III .  LINEARIZED SOLUTION 

Equations (12) and (13) are our final 
equations, and these are mutually coupled 
through the coefficients km 2 and Jm" We will 
first identify the wave solution by in- 
voking the_physically unrealistic assump- 
tion tha t  V ~ 1, such tha t  km 2 and Jm are 
constant and (12) is thus linear. 

The solution of the homogeneous form 
of (12) is 

Ym = Ae+~kmh + Be-ik"h. (14) 

I f  km 2 > 0, then k m is real and (14) repre- 
sents a wave solution. Upon combining (1 l) 
and (14), the motion is represented by 
oscillations of the form exp[i(fJt + x /a  -4- 
kmh)], where 27r/~ is the period of the wave, 
Q its frequency, c is the horizontal phase 
speed and 2~a is the horizontal wavelength. 
The quanti ty 2~./]c m may be interpreted as 

the vertical wavelength in units of scale 
height. These waves have a vertical com- 
ponent of phase variation given by k mh and 
hence propagate in the vertical direction. 

The horizontal wavelength is of the 
order of the radius of the planet, such that  
these waves could be modified by Coriolis 
forces. Such thermally excited internal 
gravity waves modified by Coriolis forces 
are referred to as thermal tides (Chapman 
and Lindzen, 1970). The slow rotation of 
Venus and the strong zonal circulation 
suggests tha t  Coriolis forces will play a 
minor role compared with inertia forces 
in the propagation of tides. I t  may easily 
be shown (Ramanathan, 1973) that  when 
U>> c, the Coriolis effects in modifying 
the wave structure are negligible. Hence 
the wave solutions will simply be referred 
to as internal gravity waves. 

Propagating waves t ranspor t  energy in 
the vertical direction, and consistent with 
the present linearization, U may be 
neglected in (5), so tha t  from (11) the 
vertical flux of energy follows to be 

<p~' 4'> = - c  @u' ~'> 
=-p0c2DImlYdY*/dh] .  (15) 

Upon introducing (14) into (15), it follows 
tha t  (poj'qS'> is positive for the wave 
given by A e  +lkmh, while for the wave 
given by Be  -~k'h, <p~'(I)'> is negative. 
As is conventional (Brooker and Brether- 
ton, 1967), e - ~  will be referred to as the 
downward wave. Equation (15) further 
reveals that  the vertical flow of energy 
gives rise to a mean vertical transport of 
horizontal momentum, with upward flow 
of energy resulting in a transport of pro- 
grade momentum while downward energy 
flow results in retrograde momentum. 

We will now demonstrate that  the mean 
momentum transported by internal gravity 
waves can be absorbed by the stratosphere, 
thus inducing mean zonal velocities within 
the atmosphere. Within the present linear- 
ized context, the coefficients km 2 become 

kl 2 = -(1/4) + a 2 F, (16) 

k2 2 = - ( 1 / 4 )  + ,,~ F/(1 - i/c). ( 1 7 )  

I t  is convenient at this stage to describe 
the various regions within the atmosphere. 
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Region 2 is bounded above by  the  upper 
atmosphere,  within which radiat ive heat- 
ing is negligible (Dickinson, 1972; Rama-  
na than  and Cess, 1974). This region will be 
referred to as region 3, and the t ransi t ion 
level is t aken  as h = h  I. Region 1 is 
bounded below by  the troposphere, where 
the lapse rate  is near ly  adiabat ic;  i.e., 
dT/dz  + g/C r .< g/Cp. Since the lapse rate 
within region 1 is strongly subadiabatic,  
a t ransi t ion level will be introduced 
between region 1 and the troposphere 
which is referred to as region 4. The 
mean field equations for these two add- 
i t ional regions are the same as before, 
with 

k42 = -(1/4)  + a ,  F ,  (18) 

1C31 = k22, (19) 

J3 = J4 = 0. (20) 

I t  remains to specify boundary  con- 
ditions. The energy flux should either 
vanish or be a positive finite quan t i ty  at  
the  top of the  atmosphere,  such t h a t  

<pto'~'> > O; h --> ~. (21) 

The reason for allowing <po/q~'> > 0 is 
t ha t  the wave energy comes from below, 
and since there are no sources at  the top of 
the atmosphere,  the net  energy flow should 
be upwards. This boundary  condition is 
known as the radiat ion condition (Chap- 
man  and Lindzen, 1970). At  the  boundaries 
between regions ¢ '  and o/  should be 
continuous (Hines and Reddy,  1967), such 
tha t  

dY/dh,  Y continuous at  boundaries. 
(22) 

The solution of (12) for the various 
regions m a y  now be wri t ten as 

Yl  = AI(  e-~k~h + tl l  eik~h), (23) 

Y2 ~ sa° e'-h/2 + A2 e(--k2a+lk2Dh 
0" 2 

+ B 2 e(~-ik20 h, (24) 

Y3 = A 3 e(-k2tt+~t)a -4- B 3 e (~a-~t)h, (25) 

Y4 = A 4( e - ~  + -R 4 eU'~'), (26) 

where 

]Cm=--(1 /4)+amF ; m =  1, 4, 

/¢2R = (1/%/8) (lal 2 + a22[ 1/2 ÷ al) 1/2, 

]c2i = (1/%/8) ( [a l  2 + a22[  1/2 - -  a t )  1/2, 

with 

a I = 1 -- [4a 2 F(1 + 1/~2)-1], 

a I = 4a 2 F(e + l/e) - l ,  

while Am, Bin, and Rm are constants.  
Employing (21) to region 3, then  B 3 = 0. 

The lower boundary  condition for region 
4 is ye t  to be specified, bu t  the  lapse rate  
within this region is close to adiabatic,  and 
hence we m a y  set /~4---0 since /~a is the 
magni tude of the reflected wave, and the 
wave will be strongly dissipated on passing 
through this r e g i o n . / ~  e ikxa is the reflected 
wave due to the change in lapse rate  
between regions I and 4, and thus  ]RII ~< 1. 
Fur thermore ,  the top of region 2 corres- 
ponds to a pressure of roughly 10-3mbar, 
or h~ _~ 10, and i t  m a y  easily be shown t h a t  
B 2 - 0 .  

The mean momen tum flux, or Reynolds '  
stress, t ranspor ted by  the wave is (pU%o') 
and m a y  be wri t ten as 

po Cg2~ [., d Y* 
<pU" oJ'> = ---T- .tm[ l' m --~ 

- .dYm~ 
_ _ _  ~ , , - - - ~ ) .  

(27) 

(23)-(2~),  Upon combining (27) with 
wi th  B 2 = B 3 = 0, the Reynolds '  stress for 
regions 1 through 3 follows to be: 

Region 1 : 

(2/p0 c-Q) < p u ' ~ ' >  -- ~IIA,[ 2 (1 - IR, I2). 
(28) 

Region 2 : 

(2/p 0 c.Q) <pU" w'> = (ao/a2)e-(l/2+k2~)h 
× Re{(A2/2) e'k2 a _ A~(lc2R + ik2,)e -'k2h} 
-IA2[2k2,~-2k2.  h. (29)  

Region 3 : 
( 2/po c-Q) <oU" , / >  = -~2iI A ~I 2 e-2k2Rh. 

(30) 

From the above results <pU'o/> is a 
constant  within region 1 but  a function of 
h within regions 2 and 3 such t h a t  
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I /dh ) <p U '~'> # O. The nonzero divergence 
nplies a net  conversion of wave energy, 
i th  (2) illustrating that  mean velocities 
411 be induced within the atmosphere. 
'his nonzero divergence of the Reynolds' 
~ress is due to the correlation of the wave 
eld with heating as given by the terms 
zithin the flower bracket in (29) together 
vith the radiation terms as given by the 
ast term in (29) and by (30). 

The direction of the mean flow induced 
vithin region 2 is easily shown to be 
'etrograde. An analogous proof has been 
,dven by Stern (1971). Considering the 
lorizontal average of the x-component 
)f the momentum equation, and inte- 
~at ing this over region 2, it is found that  

at3o (pU)dh = <pU'~'>h=0 -- <pU ~ >~=h,. 

(31) 
For simplicity of presentation let the 
bottom boundary of region 1 be rigid, for 
which ]_Rll = 1, while the radiation term 
will be neglected, which corresponds to 
k2R =0. I t  then follows from (28), (30), 
and (31) that  

~tJo (PU)dh=(P°-~Q)k2,1A312. (32) 

Equation ( 32) illustrates that  retrograde 
(positive) momentum is added to region 2, 
and this proof is equally applicable for 
/¢, # 1 and k2R # 0. Stern (1971) gives the 
following physical explanation: Away from 
region 2 (i.e., region 3), <pU'o/> < 0 such 
that  periodic heating pumps momentum 
in the negative x-direction within region 3. 
There is a compensating torque within 
region 2 which causes a mean velocity in 
the positive x-direction. Equation (32) 
shows that  U increases with t ime and 
viscous forces will ultimately become 
important.  The steady state is character- 
ized by 

<pU'¢o'> = (tx/H 2) (dU/dh) + const. (33) 

Since < p U ' ~ ' > = 0  and dU/dh=O for 
h -~ 0% the constant is zero. Equation (38) 
then shows that,  in a steady state, the 
Reynolds' stress is balanced entirely by the 
viscous stress, and the final form of this 

4 

equation, with appropriate substitutions, 
is given by (13). 

We next consider region 1. Upon sub- 
stituting (28)into (13), 

dV/dh = (S/2)k~IA~I 2 (I -- IR,[) 2. (34) 

I t  has earlier been shown that  IR~ < 1, 
and hence (34) demonstrates that  V > 0, 
implying that  retrograde velocities will 
be induced within region 1 also. In  deriving 
(34), it has implicitly been assumed that  
(d/dh)(pU'o/> # 0 throughout region 4. 
Several dissipative mechanisms can be 
proposed (Ramanathan, 1973) which would 
give rise to a nonzero divergence of 
(pUQo'>. These mechanisms affect only the 
coefficient I/~l I, and since it will be shown 
later that  the mean velocity is very 
weakly dependent on I Bll, consideration 
has not been given to these details in the 
present linearized description. 

I V .  STRATOSPHERIC CIRCULATION 

The previous section indicates quali- 
tatively that  mean retrograde winds can 
be induced within the stratosphere. How- 
ever, the actual magnitude of the wind 
can be estimated only by solving the 
nonlinear mean field equations, and this 
will be at tempted in the present section. 
Due to the vanishing of radiative heating 
within region 1, it is found necessary to 
treat  regions 1 and 2 separately. The 
presence of the heating term within region 
2 precludes the possibility of an exact 
solution of the mean field equations for this 
region, and correspondingly an asymptotic 
analysis is presented. 

Lower Stratospheric Circulation 
The governing mean field equations and 

the periodic heating function are the same 
as described in Section II, and the atmos- 
phere is again divided into separate regions, 
such that  the individual regions are solved 
and matched by appropriate boundary 
conditions. 

With regard to region_l, kl2 (h)appeaxing 
(12) is a function of V and dV/dh, while 

V from (18) is a function of Y(dY/dh), 
and the two equations are coupled and 
nonlinear. A closed form solution to these 
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coupled equations, however, has been 
shown to exist (Booker and Bretherton, 
1967; Ramanathan,  1973) for internal 
gravi ty waves with a constant mean shear 
(i.e., constant dV/dh). The procedure is 
straightforward and the solutions may be 
writ ten as 

Y~(~) = A~[M_(~?) +/~1M+(V)], (35) 

dV/dh = (S/2)[At[ 2 (1 - IRII2)Ix[, (36) 

where 

1 + V(O) 
,~= d~/d-------X- + h, 

4~1_____~E 
X 2 = 1 (d V/dh) 2 = 1 - 4Ri, 

with Ri denoting the Richardson number, 

Ri = (g/T) (dT/dz + g/Cp) 
(dU/dz)~ 

while A t and ~ t  are constants, and 
M±(~) denote the Whittaker functions 
given by  (Abramovitz and Segun, 1965) 

M ~ ( V )  = 

,7('±'~xJn)e.n ,F, (3 ± ilxl/2; 1 ± ilxJ ;~), 

where 1~'1( ) is the confluent hyper- 
geometric function. 

Equation (35) describes a propagating 
wave, and IF1( ) is a real function since 

is real, and the phase variation of the 
wave is adequately described by  7/±t~,1/2, 
which may in turn be written as 
exp[±(ilx]/2)ln ,/]. Based upon previous 
convention, ~-~lx I/~ denotes a downward 
propagating wave and ~lx3n an upward 
wave. The amplitude of the wave is a 
function of h, as opposed to the linear case 
in which the amplitude was constant. 
The amplitude variation is due to a con- 
tinuous exchange of energy between the 
wave and the mean flow. 

The reflection coefficient I Rl I will always 
be less than 1, and thus we conclude from 
(36) that  the motion is retrograde in direc- 
tion within region 1. The magnitude of the 
mean velocity may  be obtained from (36) 
once A~ and R~ are known. For this pur- 
pose it is necessary to obtain solutions for 
the adjacent regions. 

With respect to region 2, the presence 
of the inhomogeneous term in (12) makes 
it difficult to a t tempt  an analytical sol- 
ution. Since we need this solution only to 
determine the constant A t, we will adopt 
a simplified model and assume the velocity 
to be constant within region 2. Justification 
for this assumption will be given later. 

Since V must be continuous at h = 0, 
F in region 2 will be equal to V(0) as 
appears within the region 1 solution. In 
that  V is a constant within region 2, then 
k22 is also a constant and the results of the 
previous section apply. The solution for 
Yz is given by  (24) with B 2 = 0 as per prior 
justification. The only modification con- 
cerns the constants a I and a 2, which appear 
in the definitions for k2R and kzt, and these 
become 

+4°2F { - - . J  L + 1 }  -1V(0 ) ]  2 a~ = 1 [1 V'--to)l~ 1 + ~ r l  ' 

40" 2 .~ 
a2 [1 + g ( o ) ]  2 

1 -1  

Consider next region 4. This region can 
be expected to have a large apparent 
viscosity due to turbulence, and hence it 
will be assumed that  a significant mean 
velocity cannot be induced within this 
region. With V = 0, the solution for Y4 
is given by  (26) with R4 = 0 as per prior 
discussion. 

I t  remains to specify boundary con- 
ditions at h = 0 and h = - h  o. One boundary 
condition is that  the mean velocity V 
must be continuous at boundaries, whereas 
the mean velocity profile assumed for 
regions i and 4 gives rise to a discontinuity 
in d V/dh at boundaries. Booker and 
Bretherton (1967) have considered exactly 
this situation. They illustrate that  ~ '  and 
¢" should be continuous at boundaries, 
which yields 

~'rl ---~ Ym ) 

d r ,  Y ,  (dV/dh) dY,,,~ h=-- h,,,, 
dh 1 + V dh ) 

with m = 2 ,  4; and h z = 0  and h 4 - - h e .  
From the preceding considerations, the 
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onstants  A 1 and  /~l are obtained as 

Al{2= 2(a°~ 2 sinh(~[Xl/2) 

[x{(1 + I 

a 2 _F 1(½ --  ]QR)z - -  ]¢~  ( 3 7 )  
× [1 + k2R) + 

1 i[ 2k'I lxl) 
IR,I' = + XL J - 

/ 

/ / r  2 ~  4 1 {X[~ 2.} (38)  

I t  is apparent  from (38) that{Rll  < 1 ,  
consistent wi th  previous considerations. 

Upon subst i tut ing (37) and (38) into 
(_36), we can solve for d V/dh and thus  
V_(h), employing the  boundary  condition 
V-~ 0 a t  h = - h  0. I t  is easily shown tha t  
only one solution exists, which corres- 
ponds to retrograde motion.  Since X 2 > 0 
for propagat ing waves to be possible, then  
i t  follows from the definition of X 2 t h a t  
Ri  > ¼, which is the condition for shear 
flow stabil i ty.  Thus our solution suggests 
t h a t  a shear flow supported by  Reynolds '  
stresses will no t  lead to a shear flow 
instabil i ty.  

To determine V(h), we must  first 
evaluate  k ~ ,  ]c2~, X 2, and ]c 4, together wi th  
the parameters  a,, a2, F ,  and S. Since 
dT /dh  -~ 0 in region 2, then  a~ -~ t~/C~, with 
C~/_R--3.7. The bo t tom boundary  of  
region 1 is the  tropopause,  for which 
P _ 0.3arm, so t ha t  h o - 6.4. In  addition,  
the  lapse rate  dT/dz  = - 4 . 5 K / k m  -~ corres- 
ponds to d V / d h = - 1 9 . 5 K ,  and wi th  
T ~ _  ~ 200K, a~ = 0.21. Fur thermore  F =  
.RTo/c z ---- 1900, while S ----- Ho2ffJ/vo = 1.25 
× 10 ~. The constant  a o refers to t hehea t i ng  
te rm within region 2, wi th  a o = ~T0/1920e 
= 3.14 for ~ -- 0.084. 

Mean velocity profiles are i l lustrated in 
Fig. 2 for different assumed lapse rates 
wi th in  region 4, the lapse ra te  appearing 
in the  expression for k~. All the profiles 
show a large retrograde velocity within the 
lower stratosphere. The uv cloud region 
is indicated in the figure and the 100 m sec- 
wind presumably pertains to this region. 
The 100msec -~ velocity in the  figure lies 
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Fro. 2. Mean velocity results for the lower 
stratosphere. Curve 1 : (dT/dz + g/Op),~ = OAK/ 
km; Curve 2 : (d~/dz + g/Cp),, = 0.01 K/kin ; Curve 
3 :v e = 104cmZsec -1 for lower stratosphere. 

well wi thin this region, bu t  wha t  is more 
impor tan t  t han  the actual  magni tude  is 
the fact  t h a t  large velocities can be induced 
within this region where direct diurnal  
solar heat ing is negligible. 

Curve 1 corresponds to (dT]dz + g/Cp)4 = 
0.1 K k m  -1, with I R, I = 0.5, while for curve 
2 (dT[dz + g / C p ) , - - 0 . 1 K k m  -~ and  {R,[ = 
0.96. I t  is seen t h a t  there is very  little 
difference in the  mean velocity profiles. 
The lapse rate  and the  dynamics  of  region 
4 affect only the coefficient IR,{, and  our 
justification in not  considering the detailed 
dynamics  of region 4 is the insensi t ivi ty 
of the mean  velocity profile in region 
I to IR,}. 

The molecular kinematic  viscosity 
r e =  60cmZsec -~ was used to determine 
curves 1 and  2. In  the  terrestrial  stratos- 
phere i t  is conventional to  instead use an  
eddy  viscosity v e ~ 104cm2sec -1. Though 
this value is probably not  appropriate 
to Venus, i t  was employed to est imate the 
sensit ivi ty of V upon v e. Even  increasing 
v e by  more t h a n  two orders of magni tude  
relative to the molecular value, curve 3 
shows t h a t  the net  effect upon V is no t  
large, wi th  the  velocity at  the 85km level 
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being decreased from 200reset -1 to 
165msec-L 

We have assumed a constant U in region 
2 with the justification that  this does not 
affect the results within the lower stratos- 
phere. To verify this, calculations were 
performed assuming that  heating exists 
only within half a scale height in the upper 
stratosphere, again yielding a mean veloc- 
i ty  of between 165msec -~ and 210msec -~ 
at the 85km level. This intriguing insensi- 
t iv i ty  of the magnitude of the mean 
velocity may  physically be understood as 
follows. ~rom (36), U varies as IAl]2= 
A~AI*, which is the square of the ampli- 
tude of the wave whose source is in region 
2 and depends upon the wave structure 
within region 2 as shown by  (37). This 
dependency is the sole reason for the 
insensitivity of the mean velocity, and to 
make the presentation simpler we will 
neglect the radiation term in k 2 such that  
A ~ may be written as 

A l = c o [ ~ )  for k22 > O, 

_ c  - o \ y - 4 - ~  / for  k~ 2 < 0, 

where 

]~2 2 ~ , 0"2 . ~  

[I + V(O)] 2 - -  ¼ 

and v o is a constant which is not  revelant to 
the present description. 

The quanti ty A i A t* now becomes 

A,A~/% 2 = 1 for k2 :z > O, 

Ik l! for kzz < 0, (39) 

Now for k22 = 0, U(0) = 170msec -1, while 
for k22 < 0, U(0) exceeds 170reset -1, and 
(39) illustrates tha t  A,AI* decreases 
rapidly. For k22< 0, the waves in the 
upper stratosphere are reflected upwards 
and only a small fraction of the energy 
leaks to the lower region. This is signified 
by  the term (½-  ]k21)z in (39). Since U(0) 
varies as A 1A 1", and since A 1A 1" -+ 0 as 
U(0) increases, then U(0) cannot increase 
indefinitely. This property sets an upper 
limit upon U(0) which is roughly 
200msec-L A lower limit for U(0) is about  

170msec -1, since when U(0) < 170msee -1, 
k22> 0 such that  AiAl*/co2= 1 and the 
heating is so strong that  ~(0) will be close 
to 170msec -1 in spite of using unrealistic- 
ally low values of (1 -- R i l l *  ) or a high 
eddy viscosity. From these discussions, 
it seems appropriate to conclude that  the 
mean velocities within the lower strato- 
sphere should lie between curve 1 and curve 
3 in Fig. 2. 

We have permitted discontinuities in 
wind shears and temperature gradients 
at the boundaries which separate the vari- 
ous atmospheric regions. Although these 
discontinuities might introduce spurious 
reflections, such reflections will not sig- 
nificantly affect our results for the mean 
velocity, since these reflections influence 
only the coefficients A l and ~l ,  whereas 
the previous discussion clearly shows that  
the mean velocity is quite insensitive to 
the absolute magnitudes of these coeffi- 
cients. 

I t  is seen from (36) and (38) that  
d V/dh, and thus V, in region 1 depends 
upon k 4, and hence region 4 may be of 
importance in producing retrograde mean 
flows within region 1. For example (38) 
illustrates that  as IK4] increases, ]/~l] de- 
creases, and (36) correspondingly indicates 
that  d V/dh increases. Nevertheless, we 
wish to reiterate that  the results for V 
within region 1 are relatively insensitive 
to the absolute magnitude of/~1, and this 
is our only justification for not giving 
detailed consideration to region 4. Further- 
more the physical state of the atmosphere 
within region 4 (e.g. cloud amount, cloud 
composition, etc.) is not clearly known 
from existing observations, and thus a 
more detailed dynamical modeling of this 
region of the atmosphere seems unwar- 
ranted at the present time. 

A final point to be mentioned is the 
stability of the shear flow within the lower 
stratosphere. Cess and Harshbardhan 
(1974) have considered the stability cri- 
terion for a radiating shear layer, and they 
show that  for Venus the flow is stable when 
Ri > ¼; i.e., radiation does not destabilize 
the shear layer. For the profiles shown in 
Fig. 2, Ri > 5, indicating that  destabiliza- 
tion is unlikely. 
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"]pper Stratospheric  Circulat ion 

In the preceding development we as- 
sumed U to be constant and imposed a 
ralue of U(0), obtained from the solution 
!or the stratosphere, upon the upper 
~tratosphere. This U(0) turned out to be 
arge, and we will now show that  the 
parameter values within the upper stratos- 
phere permit such large mean velocities. 

Radiative heating occurs within this 
region, and the corresponding nonhomo- 
geneous term in the nonlinear mean field 
equations prevents an analytical solution 
as was accomplished for the lower strato- 
sphere. Furthermore, at tempts to numeri- 
cally solve a similar set of equations 
(Young and Schubert, 1973), even after 
invoking the Boussinesq approximation, 
have met with little success. We will 
consequently adopt a procedure similar to 
tha t  suggested by  Gierasch (1970). In the 
Reynolds'  stress equation Gierasch sets 
(pU'¢o'~ = O, arguing physically that  the 
mean velocity increases until the effect of 
advection of mean velocity on the thermal 
field completely eliminates the change of its 
phase with height. Gierasch {1970) has 
overestimated the radiative heating and 
uses an ~ which increases exponentially 
with altitude, and as a result he obtains a 
mean velocity which increases exponen- 
tially with h, while we have shown that  E 
is constant. 

We will seek to estimate the magnitude 
of the mean velocity with the proviso that  
(pU'o~'~ = 0. A partial justification for 
letting ( p U ' w ' ~  ~ 0 within the momentum 
equation as a means for estimating 
the asymptotic steady state velocity U is 
as follows. Let  us consider the wave sol- 
ution for region 2 as given by  (24). For 
simplicity of presentation we consider 
only the upward wave given by  
A2exp[--(lQR +ik21)h ]. From (15) it 
follows that  

(pU' ~'~ ~ k21(h), 
while the expressions following (26) show 
that  k21--~ 0 for large U, and in turn 
( p U ' ~ ' ) - ~  0. As the mean velocity in- 
creases it rapidly eliminates the phase 
variation of the wave, and recall that  it is 
the phase variation of the wave which 

induces mean velocities within the atmos- 
phere. A steady state can thus be charac- 
terized by  that  value of the mean velocity 
which completely dominates the altitude 
variation of the phase of the wave. 

Young and Schubert (1973) conclude 
that  such an a priori assumption is not 
justifiable, although they arrive at this 
conclusion employing their results which 
show that  " the mean velocity profiles 
obtained using the Reynolds'  stress equa- 
tion for decreasing values of kinematic 
viscosity do not approach the completely 
inviscid mean velocity profile." But  Young 
and Schubert do not consider internal 
gravity waves. Furthermore, as discussed 
previously, our rationale in letting 
(pU'¢o ' )  = 0 is not because of negligible 
kinematic viscosity, but  rather that  the 
phase of the propagating wave vanishes 
as U increases. Since the physics of the 
model considered in this work is signifi- 
cantly different from the model of Young 
and Schubert, their conclusions are not  
applicable to the present analysis. 

Young and Schubert (1973) further 
comment that  letting ( p U ' o / ) =  0 leads 
to a physically unrealistic result that  the 
mean velocity depends only upon the 
stratification and is independent of the 
radiative heating term. On the contrary, 
we feel it is quite realistic that  in a s teady 
state the mean velocity should depend 
only upon the stratification, the reason 
being that  radiative heating is sufficiently 
strong to induce strong mean winds in the 
atmosphere, but  the propagation of waves 
(which is the means by which velocity is 
induced within the atmosphere) is possible 
only when the phase k22 > 0, and as shown 
earlier k22 --> 0 as G increases. Hence it is 
this condition which limits the strength 
of the mean wind. Since k2 z depends only 
on stratification and mean velocity, it is 
not unrealistic that  the steady state mean 
velocity depends only on the stratification 
of the atmosphere. 

We will now use this asymptotic ap- 
proach andlet  ( p U ' t o ' )  ~- 0 within the mean 
field equation and thus delete the Reynolds'  
stress equation. A moving coordinate 
system will be adopted defined by  X -- x + 
ct, and in the X coordinate system the 
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motion will be steady. The horizontal 
velocity U in this moving coordinate 
system has the meaning U =  U~+c,  
where U~ is the actual velocity, and we 
define the dimensionless variables 

V =  U/U(O), ~ = ¢ ' / U ( 0 ) ,  
O= T' /To,  A= X/a. 

We start  with (5)-(8), letting OU'/~t = 
OT'/~t= 0 with the understanding that  
U =  Ua + c, cross differentiating (5) and 
(6) to eliminate ~b', and introducing the 
stream function. The resulting equations 
a r e  

R T  o aO 
[U(o)]~ a~' 

(40) 

U(0)( aO (~ eha~ 0 
2 = ( 4 i )  

Equations (40) and (41) permit solutions 
of the form 

0 Re[ O(h) l e '~ (42) 

Furthermore, Gierasch (1970) has shown 
that  .<pU'to') = 0 implies 0 / 0 "  = const; 
i.e., ~ = TRe -i~, where ~R is real and 
0 =  0Re - l~ and 21 is a constant. Letting 
0 = ~ae  -i~, employing (40) and (41), and 
matching real and imaginary parts 

0 R = a 0 ¢ cos Al, (43) 

r = (c tan 21/~ U(0)) + ae a L, (44) 

where L = ~R/0R is defined by  the non- 
linear equation 

~ ( 0 )  e ~ - -  a2 e2a L2 + I_U2(O)j e l ,  

(45) 
where c I is an integration constant. 
Equation (45) may  be converted into 
Airy's equation (Miller, 1946), and the 
solution expressed in terms of Alry's 
function. There are two solutions, and one 
of them predicts a ~7(h) which changes 
sign with altitude. Since the physics of the 
problem does not allow such a variation, 

this solution is deleted, and the solution 
for L is 

L=--e--S½ ~- A u3A;(v) (46) 

where Ai(V) is Airy's function, Ai'O? ) 
denotes differentiation with respect to ~/, 
and 

= A -~/3 (Ah -- c I fll + 1/4), 
- -  E - 

A = as RTo 

.~U(o) 
fll = c tan)h" 

There are two constants c I and )h to be 
evaluated such that  two boundary con- 
ditions are necessary. The boundary con- 
dition on mean velocity is that  dV/dh be 
continuous across the boundary between 
regions 1 and 2, and since the shear within 
region 1 is a constant, while V(0) = 1, then 

dV/dh = 1/he; h = 0, (47) 

with h 0 = 6.4. For the second boundary 
condition we will let 

r eh = L = 0 ;  h = 0 .  (48) 

This condition, although an approximate 
one, is consistent with the mean shear 
introduced in the lower stratosphere. 
I t  was previously shown that  when U(0) 
is large, only a small fraction of the energy 
leaks into the lower stratosphere implying 
that  ¢o'~ 0 at the boundary. With these 
two boundary conditions (44) and (46) 
yield 

tan A 1 = ca2/~To/0.22 c. (49) 

All the quantities appearing within (49) 
have previously been described, such that  
tanAl=4.22,  and (44) yields U(0)-- 
200msec -l.  Indeed a large velocity is 
thus induced within the upper strat~- 
sphere, and the value for U(0) agrees with 
our previous analysis for the lower strato- 
spheric circulation. 

The day-to-night temperature oscillation 
within the upper stratosphere is illustrated 
in Fig. 3, together with results which 
apply in the absence of motion, b" = 0 
(Cess and Ramanathan,  1972), and it is 
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FIG. 3. Diurnal variation of temperature 
within the upper stratosphere. The curve due to 
Cess and Ramanathan (1972) is for ~ = 0. 

seen that  the induced motion reduces the 
maximum temperature difference from 
95K to 20K. The maximum temperature 
occurs at  ~---75 °, while A = 0 is the sub- 
solar point. This phase lag is a result of 
retrograde advection of the hot spot. 

The profiles for U and U' are shown in 
Fig. 4. I t  is seen that  U']U < 0.1, satis- 
fying the mean field approximation. For 
large h, U varies as h 1/2, but  the results 
above 100km may not be valid, since the 
heating term appropriate to altitudes 

above 100kin is dominated by  Doppler 
broadening, and minor isotopic species 
contribute to heating as discussed b y  
Dickinson (1972), and Ramanathan and 
Cess (1974). Hence the applicability of the 
results should be limited to about  100kin. 
Further, it should be pointed out that  the 
present analysis does not yield the direction 
of U. However the linearized analysis 
indicates that  U should be retrograde. 

V. CONCLUSIONS 

Strong mean zonal winds are induced by  
Reynolds'  stresses resulting from the phase 
variation or tilt of convection cells. 
Though the basic principle, that  the strong 
retrograde circulation for Venus is therm- 
ally driven, is similar to the hypothesis 
originally proposed by  Schubert and 
Whitehead (1969), the dynamical model 
presented here differs substantially in the 
mechanism by  which Reynolds'  stresses 
are created within the atmosphere. While 
the viscous diffusion mechanisms proposed 
by  Schubert and Whitehead can generate 
mean flows, there are several additional 
features of the problem which lead to the 
conclusion that  this phenomenon does not  
contribute significantly to the mean winds 
within the stratosphere of Venus. For 
example, as illustrated by  Gierasch (1970) 
the viscous term in the mean field equations 
is negligible when compared with the 
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FIG. 4. Fluctuating and mean velocity profiles for the stratosphere of Venus. 
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inertia term. In addition the stratosphere 
is stably stratified, and the results pres- 
ented here as well as the analyses of Stern 
(1971), and Kelly and Vreeman (1970) 
reveal the importance of  gravity waves in 
the generation of mean flows. Furthermore 
the nature of the radiative heating itself 
supports the mechanism proposed here. 
Periodic heating is negligible within the 
lower stratosphere, while the observations 
of strong motions pertain to the lower 
stratosphere. As discussed earlier, propa- 
gating internal gravity waves are the only 
apparent mechanism that  can induce 
strong winds in a region within which 
heating is absent. 

The calculated mean zonal wind in- 
creases from zero at the tropopause to at  
least 200msec -1 within the upper strato- 
sphere. The rotational velocity of the planet 
at  the equator is 2 m sec -I while the velocity 
based on a solar day is 4msec -l. The single 
important reason for this super rotation 
within the atmosphere is that  the slow 
rotation rate of the planet permits a strong 
thermal response and a larger phase 
variation of the wave given by  kin2. 

Another important result from the 
present analysis is the direction of the 
zonal flow. The planet is rotating in the 
retrograde direction and the observations 
of the atmosphere show that  the mean 
motion is in the same direction. Results 
presented here regarding the direction of 
the zonal wind are in agreement with the 
observations. 

The magnitude of the mean winds 
estimated in the present analysis seems 
also to be consistent with observation. 
Boyer (1973) has recently reported a 
detailed and interesting observation of the 
zonal winds, and in addition to observing 
the 100reset -~ wind near the uv cloud 
level, he has noted irregular clouds circu- 
lating more rapidly at higher altitudes 
with velocities ranging from 100msec -1 to 
220msec -l.  

Ainsworth and Herman (1972) have 
deduced velocity profiles from the Soviet 
Venera data which show a mean velocity of 
130msec -~ at the 50km level, and the 
shear layer extends down to 40km with 
velocities of 30msec -1 at this level. The 

lapse rate predicted by  Ainsworth and 
Herman is subadiabatic above 3Okm, in 
contrast to the Mariner 5 data (Fjelbdo 
et al., 1971) which indicates an adiabatic 
lapse rate below 58kin. Nevertheless, if the 
atmosphere has a subadiabatic lapse 
rate down to the 30km level, then km 2 will 
be positive and large and the present 
analysis would predict large mean winds 
within this region also. Such an at tempt  
was not pursued due to the controversial 
nature of the data, and also due to the 
presence of dense clouds at these lower 
levels. 

The mechanism proposed herein for 
the stratospheric circulation also has 
implications to the dynamics of the upper 
atmosphere. As was shown at the end of 
Section III ,  waves generated within the 
upper stratosphere pump prograde mom- 
entum to the upper atmosphere (region 3), 
thereby inducing retrograde winds within 
the stratosphere. From considerations of 
conservation of momentum, it follows 
that  prograde velocities should exist within 
the upper atmosphere. However, the 
kinematic viscosity is very large in the 
upper atmosphere, which may severely 
damp the waves, preventing large prograde 
winds from being induced within this 
region. The importance of viscous damping 
depends, among other things, on the 
vertical wavelength and on the zonal 
winds. These two factors are in turn 
coupled to the magnitude of the viscous 
damping. The complex nature of this 
coupled problem defies any simple order 
of magnitude analysis; it is impossible to 
be more quantitative on the strength and 
direction of winds within the upper 
atmosphere without a detailed analysis of 
the upper atmosphere. Nevertheless, based 
upon the present analysis, it  is reasonable 
to conclude that  the strength of the 
retrograde velocity will decrease with 
increasing altitude in the region above 
the upper stratosphere, and that  the 
possibility of prograde winds within the 
upper atmosphere cannot be ruled out. 

Two other important aspects of the 
Venus circulation problem have not been 
discussed. One concerns the latitudinal 
transport of zonal momentum, while the 
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e c o n d  is t h e  v a r i a t i o n  of  t he  a b u n d a n c e  
)f C02 w i t h  a f o u r - d a y  pe r iod  as o b s e r v e d  
)y  Y o u n g  et al. (1973). G ie ra sch  et al. 
i1973) h a v e  sugges ted  a m e c h a n i s m  for  t he  
a t t e r ,  whi le  t he  a n s w e r  to  t h e  l a t i t u d i n a l  
~ranspor t  p r o b l e m  can  o n l y  be p r o v i d e d  
by t he  s o l u t i o n  of t he  comple t e  t h r e e  
d i m e n s i o n a l  e q u a t i o n s .  
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