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Abstract.

A Lagrangian view is adopted for establishing the spatiotemporal cloud

statistics and the scale dependent radiative properties using satellite data. Individual
clouds are identified using a newly developed scheme. We sort all clouds by cloud type,
cloud area, and number of clouds in each area bin, as well as their radiative properties.
For seven different cloud types our analyses provide radiative properties, such as albedo
and cloud top temperature, as a function of the cloud spatial scale. All clouds are marked
by local time, and large clouds are tracked over time. These analyses provide diurnal
variability, lifetimes, and evolution of cloud systems as a function of their spatial scales.
These scale dependent cloud properties can be objectively used in guiding the
development and evaluation of cloud parameterization in global climate models (GCMs).
Particularly, we show how our Lagrangian approach can be used to establish the relative
importance of resolvable and fully parameterized clouds to the total cloudy area and to
the total amount of reflected visible irradiance. Focus in this 1 month satellite study is on
the convective-stratiform cloud systems over the western and central tropical Pacific
Ocean, including the so-called warm pool. We adopt the hourly Japanese geostationary
satellite (GMS) window channel radiances in the visible and IR window region for cloud
classification and characterization. To study the radiative contributions of different clouds
in the area, we computed the bidirectional model (BDM) for the Visible and Infrared
Spin Scan Radiometer instrument aboard GMS, which we show to agree well with the
BDM of the Earth Radiation Budget instrument aboard the Nimbus 7 satellite. An
iterative two-stage cloud detection scheme was developed to identify individual clouds.
Furthermore, a tracking algorithm was developed to study the time evolution of mesoscale
convective systems (MCS). It operates on area and orientationally equivalent ellipsoidal
representations of these MCS. We show that the temporal statistics of these convective
anvil clouds show good agreement with those reported in the literature. Our data indicate
that for the convective-stratiform systems in the tropical Pacific, 95% of the radiatively
important clouds (containing a core with an effective brightness temperature <219 K) are
of scales resolvable by a GCM of about 50 km X 50 km. On the other hand, a GCM of
250 km X 250 km will only be able to resolve 50% of the radiatively important clouds.
This, however, does not mean that the processes responsible for the formation and
maintenance of these systems are also resolvable. The low clouds that are unattached to
convective-stratiform systems are mostly unresolvable by available GCMs.

1. Introduction

Satellite data offer an enormous potential for understanding
the spatial and temporal characteristics of clouds. In particular,
they offer the only data source for understanding the scale
dependence of cloud properties and the lifetimes of cloud
systems, two cloud properties which are important for the
development and validation of cloud parameterizations in
global climate models (GCMs).

Scale dependent cloud properties can only be obtained if
individual clouds have been identified. The difficulties involved
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in defining cloud boundaries using satellite data are akin to
clear sky detection with the added complexity that two adjacent
clouds may be separated by an optically thin region or by
partially cloudy pixels [Coakley and Bretherton, 1982]. The pro-
cess is complicated even more in the case of layered or over-
lapping clouds decks [Baum et al., 1994]. A step to contribute
to this challenging endeavor is presented here.

By organizing the resulting data from individual clouds in
terms of cloud type and cloud size we expect this Lagrangian
approach to be beneficial in guiding the development and
evaluation of cloud parameterization in GCMs, particularly
because it may provide insight into which cloud types dominate
a particular process at what scales. The basic Lagrangian ap-
proach to analyzing satellite data is certainly not novel. It has
been used in most studies on mesoscale convective systems
(MCS) where these MCS are generally defined by contiguous
areas that fall below an effective brightness temperature
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threshold of around 240 K, often indicating convection or
precipitation; see Mapes and Houze [1993] for an overview. A
similar single-threshold approach is adopted in many cloud-
clustering studies [see, e.g., Lee et al., 1994]. Using one tem-
perature threshold bypasses the problem of trying to establish
the “true” spatial extent of these systems. Here we propose to
use cloud boundaries that are perhaps more closely related to
true boundaries such as clear sky or another cloud. Besides
using these cloud boundaries in establishing individual clouds
we also identify clouds at effective brightness temperatures all
the way up to clear sky thereby assigning every cloudy pixel to
one particular cloud (section 3.2). We take this extended La-
grangian viewpoint and use it to establish spatio-temporal and
radiative cloud statistics.

To discuss the results obtained with our approach in the
context of GCMs, it is convenient to differentiate between
resolved and subgrid scale clouds. On a technical note, similar
to the Nyquist frequency in time series analysis, only clouds
whose size exceeds the model’s grid scale by a factor of 2 can
be considered resolvable. Resolved clouds are defined as
clouds whose size exceeds the model’s resolution. Howeyver, it
is important to keep in mind that this does not necessarily
mean that the processes leading to the formation and mainte-
nance of these clouds are also resolved. An excellent descrip-
tion of parameterization of resolvable clouds is given by
Sundgvist [1978]. For these resolved clouds one can use satel-
lite data to validate model simulation of cloud lifetimes and
their radiative properties. Subgrid scale clouds are by defini-
tion smaller than the spatial scale of the GCM under consid-
eration. Satellite data can be used here to estimate the impor-
tance of these subgrid scale clouds to the overall problem.

The above discussion argues for sorting satellite data in
terms of the spatial scales, which is one of the major goals of
this study. To indicate how our Lagrangian approach can be
used to guide GCM cloud parameterizations, we focus on
parameterization of cloud-radiative interactions alone and do
not consider important issues such as mass and momentum
transport of clouds. Since GCM resolution can vary from 50
km X 50 km to about 500 km X 500 km, the satellite data have
to be organized in terms of scales ranging from a few hundred
square kilometers to about 10° km®. As a minimum, we need
two quantities: the number of clouds as a function of the area
and the radiative properties (narrow albedo and cloud top
temperature) as a function of the area. Here we focus on
obtaining these two quantities from satellite data. Since we
base our analysis on the Japanese geostationary satellite
(GMS), we are limited to estimating narrow band albedo and
effective radiating temperature. With future improved satellite
data, more appropriate variables would include broadband
shortwave (SW) and longwave (LW) cloud forcing, cloud
height, liquid water path, cloud particle size/phase, and cloud
optical depth in the visible or emissivity in the thermal infra-
red.

Given a GCM resolution, we use the satellite data to esti-
mate two quantities: fraction of the total cloud cover that is
due to all of the resolvable scales (i.e., cumulative contribution
of all scales larger than the GCM scale) and the cumulative
contribution of clouds larger than the GCM scale to the ob-
served albedo. To demonstrate our approach, we use the
hourly geostationary satellite data over the western and central
tropical Pacific. Even though our approach includes clouds at
all scales and at all effective brightness temperatures, we spe-
cifically relate our MCS-specific findings to other MCS clima-
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tologies in the tropical Pacific [Mapes and Houze, 1993; Mapes,
1993; Chen and Houze, 1996]. To characterize these MCS not
only spatially but also temporally, we developed an automated
cloud-tracking algorithm (section 3.6). In-depth climatologies
and characterizations of MCS in other tropical regions have
been described by Lopez [1977], Williams and Houze, [1987],
Machado et al. [1992, 1993], Laing and Fritsch, [1993], and Liu
et al. [1995].

2. Data Description

The region of study is the western and central tropical Pa-
cific Ocean between 120°E and 160°W and between 20°S and
20°N. Satellite data were collected hourly between March 7,
1993, and April 7, 1993, during the field phase of the Central
Equatorial Pacific Experiment (CEPEX) [Kuettner, 1993; Wil-
liams, 1993]. Data from the Japanese geostationary satellite
GMS 4, located on the equator at 140°E, were used in this
study. It recorded one full hemispherical disk of visible (0.5—
0.75 pm) and infrared (10.5-12.5 wm IR window) radiances
every hour. Data for 1300 and 1400 UT were not available
because the radiometer was shut off because of the direct Sun
beaming into the sensors [Senta, 1989]. The nadir visible chan-
nel resolution is 1.56 km?, while the nadir IR window channel
resolution is 25 km? These data were georeferenced on an
equal angle grid with 0.064° longitude and 0.044° latitude res-
olution (35 km? at the equator) using SeaSpace’s TerraScan
software. The satellite viewing angle, the solar zenith angle,
and the relative azimuth angles were retained with the radio-
metric observations. SeaSpace’s standard calibration was per-
formed within the TerraScan software to obtain visible reflec-
tivities and effective brightness temperatures.

The relatively small land bodies in the region of interest
rendered land masking the data unnecessary for cloud identi-
fication and classification purposes. The clear sky analyses used
to establish whether the sensor produced any errors in the
effective brightness temperatures were, however, performed
on land-masked data, thus producing clear sky effective bright-
ness temperatures representative of open ocean thereby re-
moving the effect of strong diurnal variations over land. Bad
scan lines were eliminated by replacing them with the linearly
interpolated values of valid surrounding samples. To eliminate
the effects of very high Sun zenith angles at the so-called
terminator, we did not include pixels whose zenith angle ex-
ceeded 80° in our albedo statistics calculations. Furthermore,
to avoid any limb-darkening effects, only pixels west of 160°W
were used.

The cloud systems in this region are predominantly of con-
vective origin. Deep convective systems in this region lead to
extensive stratiform cirrus clouds. Plate 1 shows noontime sat-
ellite images with pseudo colored effective brightness temper-
atures to indicate the extent to which convection, as indicated
in black, dominated large portions of this region.

3. Methodology

The method we adopt for analyzing the satellite data consists
of six closely related stages: classifying clear sky, identifying
individual clouds, classifying clouds by the IR minimum bright-
ness temperature, binning clouds by their size, determining
diurnal statistics, and tracking the time evolution of mesoscale
convective systems. These steps are described in sections 3.1-
3.6. We define T as the satellite-observed effective brightness
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temperature and a,, as the narrow band albedo, which is
calculated from the observed reflectivities and the derived
GMS bidirectional model (BDM) (Appendix A).

3.1.

The necessary first step in cloud identification is to identify
clear regions. By definition all other scenes are cloudy. Our
basic clear sky classification scheme simply called pixels clear if
their T was warmer than 285 K (see dark red regions in Plate
1 for an example case). The threshold T of 285 K was obtained
by employing a variant of the spatial coherence technique of
Coakley and Bretherton [1982]. For each pixel we estimated the
mean 7T of nine pixels (which includes the eight surrounding
pixels) and the standard deviation o. A plot of the mean T
against the o revealed multiple clusters of near-zero o values
(<0.5 K). Pixels with near-zero o values stem from homoge-
neous regions in the scene. The mode value of T for each of
these clusters revealed clear sky (largest T') and overcast cloud
decks (lower values of T). The peak frequency of clear sky
occurred around 290 K, and the overcast clusters all occurred
at T values colder than 285 K, with a well-defined valley
around 285 K. This provided the rationale to call all pixels
colder than 285 K cloudy. The scale dependent statistics pre-
sented in the bulk of this paper are restricted to these cloudy
pixels.

Because of the uncertainties involved in clear sky classifica-
tions as well as the satellite instrument noise we decided not to
include one- and two-pixel clouds in our analysis. This choice
will later be justified further when we indicate (in Figures 5 and
6) that the minimum 7 of a large portion of these small clouds
are indeed, very close to the clear sky threshold of 285 K. The
one- to two-pixel isolated clouds are close to the resolution of
the instrument and hence are subject to a large uncertainty.
Recall that the area of each pixel is 35 km? and that the nadir
instrument resolution in the IR channel is 25 km? and signif-
icantly higher toward the satellite’s limb. Instead of describing
the effects of one- and two-pixel clouds under the various
cloud categories, we discuss their combined effects under the
category “small clouds.” The adopted scene classification can
be summarized as follows:

Cloudy and Clear Sky Classification

Overcast
T=285K N = 3 pixels
Overcast—small clouds
T=285K N = 2 pixels
Clear and/or partially cloudy
T>285K

where N denotes the number of pixels. The above scheme is
referred as the base case (BASE). For the bulk of the results
presented here we do not attempt to distill the purely clear
scenes from the last category above. The fundamental difficulty
we face is to distinguish the partially filled (or broken) bound-
ary layer clouds from the marine aerosols, both of which en-
hance the visible albedo and have minimal effects on T
[Wielicki and Parker, 1992; Lin and Coakley, 1993]. Because of
our interest in analyzing diurnal variations in cloud statistics
the visible channel could not be used for the bulk of our
analyses since that would skew the results between daytime
and nighttime.
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To determine the ramifications of choosing the BASE case
on our results, we performed a sensitivity study using two other
clear sky classification schemes (section 4.3). In one (referred
to as T > 290 K) we identify clear pixels as those with T >
290 K, which is similar to the value adopted by Liu et al. [1995]
for the tropical Pacific. In the second scheme (referred as
bispectral) we retain the T > 285 criteria but add the con-
straint that the visible albedo a;, of clear sky pixels shall not
exceed the solar zenith angle dependent directional albedo for
clear skies (Figure Al). These directional albedos were com-
puted from the GMS BDM (Appendix A).

In summary, our approach is quite conservative: we use only
the overcast clouds of scales larger than 100 km? for the scale
dependent statistics. For scales less than 100 km* we need
instrument resolution similar to that of the advanced very high
resolution radiometer (AVHRR) on the geostationary plat-
forms. As shown later, the small clouds covered less than 3%
of the total area for the BASE case.

3.2. Detect and Spread Cloud Identification

Here we introduce a cloud identification scheme based on
the assumption that individual clouds are distinct systems as
long as their cores or optically thicker centers are separated by
optically thinner or, in our case, higher effective brightness
temperature regions. This method provides much more that
just cloud amount for different cloud types. For example, it can
be used to establish for different cloud types the number of
clouds within different size bins. This iterative recursive two-
stage cloud identification scheme is called detect and spread
(DAS). A general description of DAS is given in section B1,
while the specific instantiation used in this study is presented
next. DAS is applied to the T field to identify pixels belonging
to the same cloud. Two guidelines must be considered before
we do so: (1) Detection of clouds based on a certain T thresh-
old involves finding consecutive sets of pixels whose 7" does not
exceed this threshold and which have not been assigned to
other already identified clouds. Every newly detected cloud
receives a unique label. (2) Spreading of clouds to a certain T
threshold involves adding edge pixels colder than this thresh-
old to all already identified clouds until no more edge pixels
can be assigned to clouds.

The first set of clouds were identified on the basis of a T
threshold T, of 240 K. These, say, N1 clouds were each
labeled with a different number and in three steps spread to a
temperature of 260 K. This means that clouds 1 through N1
were first spread to 246.6 K, then to 253.2 K, and finally, to 260
K. The next set of clouds, say N2, were then detected on the
basis of a minimum detection T of 255 K. These resulting N1
and N2 clouds were then all spread to 275 K in, again, three
steps. Two more detection steps at 270 K and 285 K were
applied together with the corresponding spread stages to 280 K
and 285 K, respectively. More specific information regarding
DAS as well as some comments on the sensitivity to the par-
ticular choices of detection and spread thresholds are provided
in section B.1.

In short, detection in this study occurred at 240, 255, 275,
and 285 K, while the corresponding spread thresholds were set
at 260, 280, 285, and 285 K. Note that DAS reduces to the
single detection threshold approaches listed by Mapes and
Houze [1993] if only the first detection stage is performed. In
these cases a one-pass implementation that is more efficient
than the recursive one proposed herein can be used [Mapes
and Houze, 1993].
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Spreading stops when all edge pixels of the current cloud are
clear, are too warm, or have already been labeled with a dif-
ferent cloud label number. The set of clouds obtained after two
detect and spread cycles is illustrated in Plate 2, where each
individual cloud is assigned a random color. We clearly see the
effect of spreading between Plate 1b (after cycle 1) and Plate
1c (after cycle 2): many clouds have been spread to occupy
larger areas. Note that the final size of a particular cloud may
not be reached until the last spread cycle is completed.

Justification for using 240 K as the first detection threshold
is based on the assumption that all connected pixels with a T of
240 K or less are associated with one convective system [Mapes
and Houze, 1993]. On the warm end the final detection and
spread thresholds were set to the 285 K clear sky threshold
established in section 3.1. The consequence of this cutoff is
that very warm clouds, optically very thin cirrus, or small bro-
ken clouds may have been ignored and that some cloud edge
pixels were not included. Again, ramifications of the adopted
clear sky scheme are discussed in section 4.3.

Optically thin cirrus at high altitudes can easily be mistaken
for lower level clouds, especially if only one IR channel is
available, since optically thin cirrus at high altitudes is often
registered at T much higher than expected based on its altitude
alone. If these thin cirri are connected to a colder core, DAS
will associate them with this core. While situations can be
sketched where such an association will not be performed
correctly, DAS remains a valuable approach to solving such
complicated cases. Detached cirrus poses a difficult problem
for our one-channel implementation, especially if its T is close
to that of the clear sky. In the case of AVHRR data [Kidwell,
1991], thin cirrus can be distinguished from low level clouds by
their difference in the channel 4 and channel 5 effective bright-
ness temperatures as a function of the channel 4 effective
brightness temperature [Lin and Coakley, 1993]. As advocated
in section B1, such additional distinctive features should be
included in the DAS scheme to guide selection of detect and
spread subfeature domains that represent different cloud clas-
sifications, thus strengthening DAS’s cloud differentiating abil-
ity. These more rigorous approaches to cloud detection are not
pursued in this paper.

3.3. Cloud Classification

Identified clouds were classified into seven cloud types on
the basis of the effective brightness temperature criteria listed
in Table 1. At least three pixels (about 35 km? each) had to
satisfy these temperature criteria in order for a cloud to be
classified as such. By imposing this three-pixel requirement a
considerable area of a cloud had to be cold enough to satisfy
the temperature criterion, thus making the analyses less sen-
sitive to spuriously low effective brightness temperatures. Re-
call that clouds smaller than three pixels were not used in
obtaining the scale dependent statistics described below.

All clouds whose core has at least three pixels colder than
219 K are defined as deep convective (DC) clouds. Two types
of deep convective clouds are defined: mesoscale convective
systems and non-MCS systems. The MCS scheme is adopted
from Laing and Fritsch [1993]: it must have a core with a
brightness temperature less than 219 K and an area greater
than 50,000 km?; the core must be surrounded by anvils with
brightness temperatures less than 240 K; the area of the core
plus the anvils must exceed 100,000 km> Besides the size
criteria for MCS, Laing and Fritsch imposed the additional
constraint that the aspect ratio of its minor and major axes
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should exceed 0.7 and that it should last for at least 6 hours.
We did not impose these particular constraints in our analyses.
Even though an MCS must contain a total area of 50,000 km?
colder than 219 K, it does not mean that these cold pixels all
belong to one cluster within the MCS; they may be distributed
over many small cold cores as long as they are connected via
pixels colder than 240 K [Chen and Houze, 1996].

3.4. Cloud Area Binning

Area binning took place with four bins per size decade
between 100 km? and 1,000,000 km?. These areas are related to
climate model resolution in Table 2. In order to be able to
validate whether these models accurately reproduce the
cloud’s radiative properties we calculated the narrow band
albedos a,,, for every pixel and used them to calculate the
average albedo per cloud type and the contribution of each
cloud type to the total reflected shortwave flux from the cloudy
portion of the scene, again as a function of cloud area. The
average cloud albedo a,, of a particular cloud type ¢, is de-
fined as the total outgoing shortwave flux over the total incom-
ing flux of all daylight pixels:

Naay

E @ n,C1,S o( o)

i=1
A€ =

Naay

E Sol Mn,v)

i=1

whereby N, is the total number of daylight pixels over all
clouds of type ¢ and S,(u, ) is the incident solar top of the
atmosphere (TOA) irradiance at cloudy pixel i. To provide
scene statistics, the average area and albedo were calculated
for each cloud type and are tabulated in Table 3.

3.5. Diurnal Statistics

The diurnal variability of the mean area as well as area-
weighted mean T and a,,, were calculated for all of the cloud
types in Table 1. These statistics were obtained by determining
for every cloud its centroid’s local hour bin and using it to
update that bin’s total cloud type statistic. A similar procedure
was used to obtain the number of occurrences statistics.

Since the GMS shut itself off during 1330 and 1430 UT and
since some images were corrupted in the transmission process,
certain local hours were sampled more frequently than others.
This shut-off is clearly indicated in Figure 2 (right) in that it
shows a gap around 1400 UT. Figure 2 is explained below. To
account for this nonuniform sampling in our frequency distri-
bution statistics, we calculated for all 24 local hour bins the
total area that was observed within our domain summed over
all 30 days. A local hour bin corresponded to a 15° longitudinal
swath around the longitudes that correspond to whole hours
(e.g., 150°E, 165°E, 180°E). Every image I(¢,) at a particular
UT hour ¢, holds area slices A(#,) of maximally 15° wide
around local hours ¢, in the range [¢,,, ¢,,,] where ¢, and ¢,,, are
functions of ¢, with n, m € [1, 24]. In order to obtain
accurate measurements of the true number of clouds N(c(?), #)
of a particular type at a given local hour one needs to know the
total area observed at that hour A(t,) = 2, 4,(¢,) versus the
maximum total area A ,,,, observed across all local hours; A .,
= A(t,) where k = argmax, A(t,). Given the computed
number of clouds M(c(t), ¢;) of a particular cloud type at a
given local hour, the area sampling corrected estimate N(c(¢),
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Plate 1. Noontime GMS effective brightness temperature images. Black indicates colder than 240 K, while

dark red indicates warmer than 285 K.

t;) is obtained with N(c(t), t,) = A(t))M(c(t), t,), where
A(t;) = ApmalA(t;). The values for A(#,) are shown in Figure
1. It is clear that local hour 2 was sampled less frequently than
hour 7, for instance, which was to be expected since it corre-
sponds to 1400 UT around which time no observations were
made.

To assess whether the GMS exhibited any systematic bias in
its clear sky brightness temperature observations, the average
clear sky brightness temperatures were computed as a function
of local hour as well as UT observing time. Since the objective
here is to identify pixels that are free of any cloud contamina-
tion, a more stringent clear sky criterion was adopted than the
one presented in section 3.1. The essential elements of this
modified scheme are T > 290 K; the standard deviation of T
for the pixel of interest and the eight surrounding pixels is less

Table 1. Cloud Type Area and Temperature Specifications
Cloud Type

Area Characteristics

MCS (T < 219 K) > 50,000 km? (T < 240 K) >
100,000 km?

Deep convective (T < 219 K) > 103.8 km? (i.e., three pixels)

Mixed 1 20K < T, < 230K
Mixed 2 230K < T, <240 K
Mixed 3 240K < Tpin < 250 K
Mixed 4 250K < T < 270 K
Low clouds Tmin > 270 K

T,nin is the effective brightness temperature of the third coldest
pixel.

than 0.6 K (the noise level of the instrument [Senta, 1989]); and
all of its eight surrounding pixels also satisfy these two criteria.
The resulting averages are shown in Figure 2. It is clear that
GMS registers significantly higher (by almost 2°) clear sky
brightness temperatures shortly after the Sun no longer shines
into the satellite’s field of view (after the satellite resumes
observation). Besides the apparent instrument-induced tem-
perature spike around 2400 LT, a clear diurnal cycle is ob-
served in which 7 increases by about 0.5 K around noon and
decreases again around midnight. To what extent the 2° tem-
perature spike is the result of satellite heating/cooling remains
to be determined, but it is clear that such large changes in
temperatures will have some effect on the cloud distributions
obtained by using DAS. The expected consequences of this
effect were examined through the sensitivity study described in

Table 2. Equatorial Grid Cell Dimensions Corresponding
to Several Commonly Used Climate Model Resolutions

Grid Box Equatorial Grid

Number of Grid Cells, Size, Box Size,
Model Longitude by Latitude deg km?
T21 64 X 32 5.625 313,600
T42 128 X 64 2.8125 87,400
T63 192 X 96 1.875 34,845
T106 320 X 160 1.125 12,544
T213 640 X 320 0.56 3,136
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Clouds After Detect Stage-1

Final Set of Identified Clouds

160W

140E  160E
Longitude

180

Plate 2. March 6, 1993, effective brightness temperature image with the identified clouds after the first and
second detection stage plus the final set of identified clouds. In Plate 2a, black indicates colder than 240 K,
while dark red indicates warmer than 285 K. In Plates 2b, 2c, and 2d, each individual cloud is assigned a

random color.

section 4.3, which revealed that different clear sky classification
schemes have only a marginal impact on our results.

3.6. Tracking Mesoscale Convective Systems

An automatic cloud tracking algorithm (CTA) was devel-
oped to follow the time evolution of size as well as average
radiative (7 and a,,) characteristics of MCS. Besides calculat-
ing characteristics such as spatiotemporal frequency, area, and
lifetime we also looked at the local hour at which they attained
and lost their MCS status and when they reached their maxi-
mum area.

In the CTA, MCS are first replaced by their ellipsoidal
equivalents. These ellipsoids have the same centroid, aspect
ratio, area, and orientation as the underlying MCS. Tracking is
then performed on these ellipsoids by allowing for merging and
splitting. One particular MCS’s time series consists of a col-
lection of MCS that through splitting and merging form one
single system at least once. This algorithm differs slightly from
the one used by Williams and Houze [1987] in that tracking is
performed on ellipsoids thereby significantly reducing the sys-
tem’s computational and memory load since it no longer re-
quires cloud masks in computing cloud overlap. See section B.2
for details on CTA.

The present version of CTA may not be applicable to time
series with sampling periods greater than several hours be-
cause MCS may travel too far to assure accurate association.
This is also the reason why small clouds cannot be tracked with

this overlap-based scheme. More sophisticated schemes such
as those used in tracking ice floes need to be used in order to
track small clouds across longer time intervals [Kwok et al.,
1990]. Such an extension was not pursued.

4. Results and Discussions

4.1. Statistics Required for Parameterization

The cumulative contributions of various cloud sizes to the
percent cloud area coverage and to the cloudy sky albedo are
shown in Figures 3 and 4. Uncertainties in the size due to cloud
edge effects and due to partially filled pixels are expected to be
large for small clouds, which are conservatively taken to be
those with sizes less than 1000 km?. Hence we have shaded the
region less than 1000 km® as “gray” in all of the figures. The
climate model resolutions are indicated on top of each of the
figures by T42,---, T213. These indicate the resolution of
spectral GCMs in terms of series of surface spherical harmon-
ics with a so-called triangular (hence the letter T) truncation
scheme for the longitudinal and latitudinal wave numbers.
Since resolution of GCMs can vary with latitude (as in the case
of spectral GCMs), the values shown are based on their equa-
torial grid cell size (also see Table 2).

A summary of Figures 3 and 4, in terms of the total domain
(20°N to 20°S and 120°E to 160°W), is given in Table 3. The
values are diurnally (all 22 observing hours for cloud cover and
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Table 3. Area and Narrow Band Albedo Statistics for Every Cloud Type

Deep Convective

Mixed Cloud Types

Non-MCS Mixed 1 Mixed 2 Mixed 3 Mixed 4 Low

MCS
Fraction of cloudy area, % 26 25
Average narrow band albedo, % 34 28

11 13 9 9 7
22 21 20 21 23

The average cloud cover is 42%. The fractional cloudy area for each category is normalized with 42%.
See Table 1 for the T ranges used for the mixed cloud types.

daylight hours for albedos) averaged quantities, averaged over
the 31 days between March 7, 1993, and April 7, 1993.

The total cloud coverage (not including the one- and two-
pixel clouds) for the domain is 42% with a mean visible albedo
of 26.6%. The small clouds (one and two pixels) occupied 3%
of the total area with a mean visible albedo of 31% and a mean
T of 241 K (BASE case in Table 4). The cold T and high visible
albedo suggest that these small clouds are primarily convective
clouds. The distribution across all seven cloud types is pre-
sented in Table 3. Roughly half the cloudy area was covered
with deep convective systems, and the DC systems’ average
albedo of about 32% was more than 10% higher than that of
the non-deep convective (other) cloud types at about 21%. Of
these deep convective systems, slightly more than half were
covered with MCS, which have an average albedo of 34%
versus 28% for the non-MCS deep convective clouds. The
average albedo of all other cloud systems (including the low
clouds) was about 21% and did not differ substantially from
one type to the other.

The cumulative distributions shown in Figures 3 and 4 indi-
cate the following: (1) More than 95% of the deep convective
cloud contribution to the total area covered by deep convective
clouds (MCS and non-MCS) are from clouds with area greater
than 10* km? Likewise, deep convective clouds with area
greater than 10* km? contribute 95% of the albedo of all deep
convective clouds combined. (2) The reverse is true for the low
warm clouds. About 80% of the contribution to fractional
cover and albedo is due to small-scale clouds (area less than
10* km?). (3) The other mixed cloud types fall in between the
convective and low clouds. (4) The cumulative contribution to
the total cloud reflected visible radiation flux (Figure 4) indi-
cates that the two deep convective cloud types (MCS and
non-MCS) were responsible for about 63% of the total daily
cloud reflected solar energy. Note that this does not include
the portion reflected by clear sky pixels. By including the two
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Figure 1. Multiplicative correction factor to account for the
fact that each local hour is not sampled equally often. This
factor was used to obtain the cloud frequency distributions as
a function of local hour in Figure 10.

coldest mixed cloud types the total contribution of these con-
vection-related clouds was about 81.5%.

The percentages cited above will change slightly if the one-
to two-pixel clouds are included in the statistics. The number
of clouds in each size bin, the albedo, and the effective bright-
ness temperature distributions per cloud types as a function of
cloud area are shown in Figures 5 and 6. These distributions
were used to calculate the cumulative contributions shown in
Figures 3 and 4. The statistics were only calculated if more than
20 clouds (in a month) of a given type and size were observed.

Figure 5 shows characteristic sizes for each cloud type as
indicated by the peaks in the parabolic curves. Non-MCS deep
convective clouds show a distinct peak at about 20,000 km?.
The characteristic size decreases with an increase in the cloud
top temperature. These distributions are critical for parame-
terizing clouds that are too small to be resolved by the model.

Figure 6a indicates that the average MCS effective bright-
ness temperature did not change considerably with area. The
same holds for large (i.c., area >10,000 km?) non-MCS deep
convective clouds. On the other hand, larger non-deep con-
vective clouds are associated with warmer average effective
brightness temperatures, which is indicated by the fact that all
lines point to the upper right. Similar dependencies are ob-
served between the average albedo and area: albedo decreases
for most non-deep convective systems except for mixed 4
(warmest) and low clouds (Figure 6b). Note the enhanced
albedo of small non-MCS and mixed 1 (219-230 K) cloud
types. One possible explanation for the dependencies revealed
by the mixed 1-3 clouds is that their optical depth may be
decreasing with the size; as a result, the effective brightness
temperature increases (penetration of clear sky emission) with
size, and albedo decreases with size. A second more conse-
quential explanation is that these large mixed clouds are truly
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Figure 2. Instrument and diurnally affected satellite-

retrieved clear sky temperatures. Average clear sky tempera-
ture as a function of UT observing hour as well as local hour.
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Figure 3. Cumulative contribution of each cloud type to the total percent cloud area coverage as a function

of the cloud area. The monthly total cloud cover was 4
and 120°E and 160°W.

a collection of mixed clouds separated by pixels partially filled
with mixed clouds. While this seems unlikely based on the fact
that DAS breaks cloud decks up into smaller segments if suf-
ficiently large fluctuations in 7 exist, to obtain a definitive
explanation, a detailed sensitivity using many different DAS
thresholds is needed, and other data sources need to be folded
into DAS as suggested in section B1.

Low clouds differentiate themselves from other non-deep
convective clouds: larger ones are more reflective instead of
leveling out at an albedo of about 22%. This is largely an
artifact of the applied clear/cloudy criterion, as will be shown
below. Furthermore, if we simply extrapolate the trends in
Figures 5 and 6 (discussed below) down to smaller-scale
clouds, we see that a large portion of these small clouds are
predicted to occur around 285 K, suggesting uncertainty about
their true nature.

4.2. Temporal Statistics Required for Validation

Our main focus will be directed toward MCS and non-MCS
cloud types because of their large area and cloud albedo con-
tributions. Diurnal variation in cloud properties and lifetimes
of clouds cannot be tuned; they have to come out of the model
simulation. Hence the temporal statistics can be used for rig-
orous validation.

Figure 7a shows normalized frequency (number of clouds at
a local hour normalized by the maximum number of cloud
occurrences for that cloud type over all 24-hour bins) of oc-
currence. MCS ensemble number frequency peaks in the early
morning (around 0500 LT), which is generally associated with
organized weather disturbances that facilitate more intense
deep convection [Gray and Jacobson, 1977]. Non-MCS have a
double peak, one at about 0400 LT and the other at about 1600
LT. The first peak is most likely the result of an increased
number of new convective cells similar to those in MCS, while

2%. The data for all clouds are between 20°N and 20°S

the latter peak is attributed to large MCS splitting up into the
smaller non-MCS. Number distributions alone are not suffi-
cient. Diurnal variation of total cloud area normalized by the
maximum total cloud area observed over all 24-hour bins is
shown in Figure 7b. The normalized total area follows the
diurnal pattern of the number frequency shown in Figure 7a.
This is consistent with those reported by Mapes and Houze
[1993]: deep convective areas show a distinct area increase just
before sunrise.

It is interesting to note that while MCS decrease in total area
and frequency between sunrise and midnight, the frequency
and total area of smaller convective systems with a 219 K core
peaks again around midafternoon. This nicely shows that many
MCS that lose their MCS status (decrease in consecutive area
within 240 K contour) turn to non-MCS DC. This distinct
second peak in non-MCS is not observed in other studies,
which may be due to the fact that we look at a cloud’s total area
and not just at that portion colder than some convection-
related cold temperature. To capture fully the mechanisms
involved, one needs to look at the number of convective cells
(T < 219 K) in an MCS as well as their area as a function of
time [Chen and Houze, 1996]. While not pursued any further,
we note that studying such interactions is greatly facilitated by
a cloud detection scheme such as DAS.

Individual MCS were tracked over time with the CTA algo-
rithm described in section 3.6. The area characteristics for all
MCS that survived more than 3 hours are shown in Figure 8.
Both panels indicate roughly that the maximum and average
areas increase with cloud lifetime. Larger cloud systems have
longer lifetimes. This is consistent with findings during the
Tropical Ocean-Global Atmosphere Coupled Ocean-Atmo-
sphere Response Experiment (TOGA COARE) [Chen and
Houze, 1996]. Several instances of MCS that lived longer than
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Figure 4. Cumulative contribution of each cloud type to the total reflected visible radiation flux as a function
of the cloud area; the average cloud albedo was 26.6%.

100 hours were found, two of which are shown in Figure 9. The
day D and night N size fluctuations, particularly those in Figure
9b, are consistent with the ensemble diurnal variations shown
in Figure 10.

For all MCS, their local start and end times were calculated
as well as the time at which they reached their maximum area
(Figure 10). It is clear that most MCS are born between 0200
and 0500 LT while they reach their maximum area around
0400 and around 1700 LT. They seem to lose their MCS status
slightly more often between 0800 and 2000 LT, which is con-
sistent with the earlier remark about non-MCS DC also occur-
ring more frequently in this time frame (shrinking MCSs turn-
ing into non-MCS DC).

4.3. Sensitivity Studies

Statistics such as those shown in Figures 3-10 can be quite
sensitive to the algorithm employed for deriving the clear skies.
Furthermore, the detect and spread algorithm is also sensitive
to the threshold temperatures used to separate various clouds.
We have performed numerous sensitivity studies. The results
from applying the three different clear sky detection schemes
described in section 3.1 (Table 4) are presented next (Figure
11). The comparison was performed on all noontime scenes
because the bispectral case could be applied during daylight
hours only. As a reminder, the BASE case was used as the
basic scheme in this paper.

Table 4. Sensitivity of the Cloud Cover and Albedo to Clear Sky Algorithms

Variable BASE Case T>290K Bispectral

Overcast criteria T <285 K <290 K <285 K;a,, > a,, (clear)
Overcast*

Cloud cover, % 40 53 60

Albedo, % 25 21 22

Effective brightness temperature, K 258 266 269
Overcast—small cloudst

Cloud cover, % 3 8 5

Albedo, % 31 20 24

Effective brightness temperature, K 241 264 264
Clear and/or partially cloudy

Cloud cover, % 57 39 35

Albedo, % 9 8.6 5.5

Effective brightness temperature, K 291 293 2925

The values shown are for local noon only.
*N = 3 pixels.
TN = 2 pixels.
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Figure 5. Number distribution of clouds as a function of their area.

The main change in cloud statistics from BASE (i.e., 285 K)
to 290 K to bispectral was an increase in total cloud area. In
addition, the size distributions for all cloud types shifted to
slightly larger sizes (Figure 11), indicating that every cloud
increased in size. This was to be expected because the edges of
most clouds (not those already surrounded by other clouds)
were extended into regions previously called clear. As a result,
the total cloud fraction increased, and the average cloud al-
bedo decreased, as indicated in the last two columns of Table
4. While not shown here, the bispectral case also showed a
significant decrease in the number of small (<1000 km?) low
clouds with a higher resulting albedo of 22%. The 15% albedos
of the large low clouds it produced were neither too large (as
with BASE) nor too close to the clear sky value (as with 290 K).
We believe that the three cases considered in Table 4 bracket
the range of uncertainty due to clear sky algorithms.

In spite of the fact that the total cloud cover increased from
43% to 65% between the BASE and bispectral cases, the
cumulative contributions to the total cloudy area and the re-
flected visible radiation flux across the seven cloud types were
nearly identical between the three cases described in Table 4
(compare Figures 11a, 11b, and 11c). In summary, as is well
known, the total cloud cover and corresponding cloudy albedo
are quite sensitive to the adopted clear sky scheme. However,
the overall conclusions derived from the statistics shown in
Figures 3-7 are quite insensitive to the clear sky scheme.

5. Conclusion

A satellite-based cloud identification scheme to detect indi-
vidual clouds was used to obtain scale dependent cloud prop-
erties as well as diurnal variations of different cloud types. This
scheme enables us to label clouds as separate even if they are
separated by an optically thin region or broken pixels. We also
introduced an algorithm to automatically track the time evo-

lution of the mesoscale convective system, thus providing in-
sight about the lifetimes of individual systems.

While we realize that our 1-month data set may not be a
climatologically representative sample, it is sufficient for dem-
onstrating the usefulness of the present approach for guiding
the development and evaluation of GCMs. Evidence for large
seasonal variations in the number of MCS is, for example,
given by Nakazawa [1988] and Laing and Fritsch [1993]. Fur-
thermore, our results are applicable only to the tropical Pacific
cloudiness. Generalization to other regions must await detailed
comparison with results from the other tropical regions. Given
these caveats, let us explore how our satellite statistics could be
used to guide the development and evaluation of cloud param-
eterizations in GCMs. In terms of the radiative importance of
resolvable and fully parameterized clouds for different GCMs
we make the following inferences from Figures 3 and 4.

1. A T213 GCM should resolve explicitly 85% of the ra-
diatively important cloudiness (MCS, non-MCS DC, mixed 1
and mixed 2); a T106 GCM should resolve about 70%; a T42
GCM should resolve about 45%; and a T21 GCM can resolve
about 30%.

2. A T213 model should resolve 95% of the radiatively
important deep convective (MCS, non-MCS DC) cloudiness; a
T106 should resolve about 90%; a T42 should resolve about
70% (100% of MCS); and a T21 will resolve only about 35% of
the radiative effect of deep convective cloudiness.

3. T21 and T42 GCMs cannot resolve any of the low clouds,
while the T213 can resolve as much as 30% of the total low
cloudiness. Recall that since the satellite cannot see low clouds
below a thick upper level deck, the low clouds shown in our
statistics are primarily those that are not overshadowed by a
convective system. One example of the low clouds observed in our
study is the trade wind cumulus clouds. Our statistics here reveal
that such low clouds (because of their smaller cloud cover) have
only a small contribution to the overall albedo for this region.
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Figure 6.

(a) Average effective brightness temperatures for each cloud type as a function of cloud area. (b)

Average diurnally averaged cloud visible albedo for each cloud type as a function of cloud area.

As indicated, a T213 model should resolve almost all of the
radiatively important clouds. In other words, a T213 should
simulate the static and temporal statistics shown in this paper.
Referring to Figure 5, we note that it will not be able to resolve
most of the small-scale convective clouds since scales less than
that of the T213 dominate the population (number density) of
clouds. This skewed distribution does not influence the average
albedo since it is dominated by the bigger clouds. However, the
small-scale clouds may dominate transport of mass and mo-
mentum, particularly in the case of the cumulus clouds. Fur-
thermore, even for the large-scale non-MCS and MCS clouds,
parameterization requires treatment of small-scale unresolved
cumulus elements, which contribute most of the condensate
and vapor to the larger-scale mesoscale circulations [Leary and
Houze, 1979; Mapes, 1993; Chen and Houze, 1996]. In sum-
mary, even a T213 would require some sort of cumulus param-
eterization for mass and momentum transport, an issue which
is beyond the scope of this paper.

Strong diurnal variations in the number and the area of deep

convective systems were observed in the whole ensemble.
These diurnal variations were also shown to exist in the time
evolution of individual MCS. Even though we used a signifi-
cantly different cloud detection scheme, these variations were
shown to match closely those found by others. Since diurnal
variations in cloud properties cannot be tuned, they have to
come out of the model simulations. Hence temporal statistics
can be used for rigorous validation.

We have shown how the cumulative area and radiative con-
tributions in Figures 3 and 4 can be used to assess the relative
importance of clouds at resolvable and subgrid scales while the
radiative properties of these clouds at different scales, which
are important in guiding cloud parameterization, can be read
from data such as that shown in Figure 6. Finally, the diurnal
and time evolution statistics in Figures 7-10 as well as the scale
dependent statistics in Figures 3—6 are instrumental in validat-
ing the model simulations. Again, recall that our findings are
limited to the tropical Pacific case and that the radiative mea-
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that these clouds occupied across the 24-hour bins.

surements from GMS should ideally be calibrated against
known reference sources.

The Lagrangian approach presented is an illustration of how
the satellite data can be used to explore objective parameter-
ization and validation of clouds in GCMs. We conclude with
the cautionary note that we are still at an infancy in our ability
to characterize clouds solely from satellite data and that the
current scheme may suffer from several limitations because of
the lack of calibration or validation with ground truth. A prom-
ising new approach has been proposed by Liu et al. [1995] that
combines microwave data with the IR and visible data. These
limitations, however, should not impact the validity of the
approach presented here.
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Appendix A: Procedure to Convert Observed

1S o

o ad
st 0eaos

Radiances to Al
Here we present the bidirectional model (BDM) as com-
puted from our 1-month GMS satellite data set and compare it
against the Earth Radiation Budget (ERB) BDM. A similar
comparison has been made by Stuhlmann et al. [1985].

The narrow band visible radiances measured by GMS have
to be converted to narrow band visible irradiances (or narrow
albedos) before we can characterize the radiative effects of
clouds. For this purpose, we need the so-called bidirectional
model (or BDM), which relates the radiance L(6,, 6, ¢) to
the desired irradiance M(6,), where 6, is the solar zenith
angle, 0 is the satellite viewing angle, and ¢ is the satellite
viewing azimuth angle. This relationship also depends on cloud
type. The BDM relates L with M according to

M(qo) = 7TL(007 67 (P)/R(Oo, 07 (P)
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Figure 8. MCS maximum and average areas as a function of cloud lifetimes.
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Figure 10. Local hours at which MCS that lived longer than
3 hours started, ended, and reached their maximum area.

where R(6,, 0, ¢) is referred to as the anisotropic factor. The
next step is to find the bidirectional function R(6,, 6, ¢). Note
that instead of using L(6,, 6, ¢) and M(6,) one can equiv-
alently substitute reflectivity r(6,, 6, ¢) and albedo a,,(6,)
(narrow band in our case) since r( 0, 8, ) = L(6y, 0, ¢)/S,,
where S, is the top of the atmosphere solar irradiance.

The procedure for obtaining R(6,, 6, ¢) is the same as that
described by Suttles [1986] for the Earth Radiation Budget
Experiment (ERBE). We base our cloud classification on ef-
fective brightness temperatures 7. For the extended tropical
Pacific scene (120°E-140°W; 20°S-20°S) we bin the observed
30 days of hourly radiance L(6,, 6, ¢) with respect to T, 6,
0, and ¢. The incremental steps used for this binning are given
in Table Al. Bins with less than 1000 observations, which
occurred because of our limited region and time frame, were
filled using linear extrapolation/interpolation of surrounding
filled bins. For each of the T and 6, bins we integrate L(6,, 6, ¢)
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with respect to the azimuth and satellite zenith angle to obtain
M(6,). The ratio of the computed M with the L(6,, 6, ¢) yields
R(6,, 0, ¢) for each T bin. To obtain narrow band albedos,
the instantaneous observed reflectivities need to be divided by
R(6,, 6, ¢). The fundamental assumption in using T as an
index to clouds at different altitudes is equivalent to assuming
that all clouds are blackbodies. Since we only had one IR
channel available, this is a reasonable assumption.

To assess the validity of the resulting GMS BDM, it was
compared with the ERBE BDM. The ERBE BDM was calcu-
lated for data from the ERB instrument on board NOAA’s
Nimbus 7 polar orbitor [Suttles, 1986]. The difference in con-
version factors between the filtered narrow band GMS 4 visible
channel radiance and the unfiltered broad band radiance will
cause a small-magnitude discrepancy between the ERB BDM
and the GMS BDM up to a solar zenith angle of about 70°
[Xianjin, 1992]. The directional albedos for both models are
shown in Figure Al, and a snapshot of the anisotropic factors
for two cloud types at two different solar zenith angles is shown
in Figure A2. Considering the spectral differences between the
BDMs, their correspondence is extremely good. The only dif-
ference is that the GMS BDM shows slightly more features,
which may be due to the fact that the ERBE BDM was filtered
on the basis of the reciprocity principle [Suttles, 1986] plus the
fact that we only used data from a small region over a relatively
short time frame, thus increasing variability and specificity to a
particular region within the satellite’s footprint or to a season-
ally specific cloud distribution. Overall, similarity between the
two BDMs is very good. This is consistent with the finding that
Nimbus 7 ERB results can be produced using GOES [Stuhl-
mann et al., 1985].

One of the intrinsic problems with BDMs for geostationary
satellites is that they mask any consistent diurnal variabilities in
cloud albedo. For example, if an MCS at a certain cloud top
temperature undergoes diurnal changes in albedo, as long as
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Figure 11.

Sensitivity of the statistics to clear sky algorithms. Statistics (described in Figure 4) are shown for

the three cases: (a) base; (b) 290 K; and (c) bispectral (see Table 4). The statistics are computed here only for

noon (local) time images.
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its T stays within a specific T bin, these albedo changes are
folded into the BDM as solar zenith angle dependencies and
cannot be distinguished from changes in albedo that are solely
due to variations in solar zenith angle. One could calculate
BDMs by binning the data not by temperature but by altitude,
if such information is available, but then the question arises
whether the same anisotropic factors can be applied to opti-
cally thick and thin cloud segments. BDMs also depend on the
angle bin sizes [Dihopolsky and Cess, 1993]. Finally, deriving
BDMs from geostationary data is complicated even further by
the underlying assumption that the different cloud types occur
at all locations in the satellite footprint equally often. An
in-depth validation of the GMS BDM would require compar-
ison with data from calibrated instruments as well as inclusion
of observations from a larger domain and time span. Such an
endeavor is beyond the scope of this paper and is reserved for
a separate study.

Appendix B: Cloud Detection and Tracking
B.1. Detect and Spread Algorithm

A general cloud detection scheme is introduced followed by
the particular instantiation used in our study. Consider an
image in which every pixel is attributed with a set of features
(e.g., effective brightness temperature, optical depth, albedo).
By defining a feature space such that the area around the
origin corresponds to clear sky and locations far away to over-
cast pixels, every pixel can be associated with one point in this
space. One can then think of clouds as being represented by
regions in this feature space. Cloud classification algorithms
are based on this very principle [Gallaudet and Simpson, 1991;
Gallegos and Hawkins, 1993]. In these approaches, points with
similar features are clustered and assigned a label (e.g., cloud
type). One can then use this to label all pixels in the image by
determining to which feature cluster they belong. This, how-
ever, does not necessarily provide individual clouds. We there-
fore decided to explore a slightly different avenue. We start
with a cloudy pixel in the image (clear sky pixels are assumed
to be masked out first) and then recursively connect it to those
adjacent pixels whose features are close. Once no more pixels
are near in feature space, a different unassigned pixel is se-
lected, and the process is continued until all cloudy pixels are
assigned to some cloud. This raises several questions: what
criterion (membership to a particular sub feature domain)
should be used in selecting seed pixels; should the same crite-
rion be used to detect all clouds, or should it change as differ-
ent cloud types (e.g., different cloud top temperatures) are
targeted; should spreading of these seeds be completed at
once, or should it be performed in stages; if spreading is
staged, what criterion should be used to stop spreading? In this
study, we explore one possible answer to these questions in the
form of the following iterative two-stage cloud detection
scheme, which we call detect and spread (DAS).

Cloud detection is performed on feature domains that are
iteratively brought closer to the clear sky origin in feature
space. Before the feature domain for the next detection is
expanded all the already detected clouds are spread by includ-
ing pixels that fall in a feature domain that is larger than the
one used in the subsequent detection stage. This avoids pixels
just outside the edge of already identified clouds being de-
tected as part of a new cloud.

In this particular study, the feature domain consisted of the
effective brightness temperatures only. The following four pa-
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Table Al. Temperature and Angle Bin Ranges Used to
Calculate the GMS Bidirectional Model
Cosine Solar Satellite Relative
Temperature Zenith Angle, Zenith Angle, Azimuth Angle,

Bin  Range, K deg deg deg
1 180-190 1.0-0.9 0-15 0-9
2 190-200 0.9-0.8 15-27 9-30
3 200-210 0.8-0.7 27-39 30-60
4 210-220 0.7-0.6 39-51 60-90
5 220-230 0.6-0.5 51-63 90-120
6 230-240 0.5-0.4 63-75 120-150
7 240-250 0.4-0.3 75-90 150-171
8 250-260 0.3-0.2 171-180
9 260-270 0.2-0.1

10 270-280 0.1-0.0

11 280290

12 290-300

rameters are used to establish the various feature domains
(temperature thresholds here):

1. T, = 240 K is the first detection temperature. Con-
secutive areas with 7 < T, are assumed to belong to one
cloud (convective systems in our case).

2. To. = 285 K is the maximum 7 above which new
clusters are not identified. Pixels with T > T .. are assumed
to be clear.

3. AT, = 15 K; the detection threshold is increased by this
value in every new detection stage.

4. AT, = 20 K; the current spreading threshold equals the
last detection temperature plus this value.

In short, the detect levels were T (i) = T,,;, + AT,, and
the corresponding spread levels were T,(i) = T,(i) + AT,
whereby either level was upper bound clipped at 7., = 285 K.
The spreading in stage i takes place in three iterations with
associated levels T,(i) + jAT,/3, where j € {1, 2, 3}. To
minimize one cloud being spread around adjacent clouds, new
clouds needed to be detected at a T colder than the T to which
the existing clouds were spread in the previous step (i.e.,
T,(i + 1) < T,(i), or equivalently, AT, > AT,). While

max
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Figure Al. Directional albedo comparison between the

ERBE and GMS bidirectional model.
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AT, > AT, could be made to depend on T itself, we decided
not to explore the possible advantages.

While no in-depth sensitivity study was performed on the
particular choice of T, Toaw ATy, and AT, insights ob-
tained from a limited sensitivity study are

1. T,.. should not be chosen too high since that dramat-
ically reduces the total number of clouds. It should be set to the
lowest possible temperature at which one expects individual
clouds to be found.

2. Detected clouds should not simply be spread to clear sky
(T .in) at once since this would cause extremely large clouds in
some cases. A hierarchy of constrained detection and spread

stages facilitates separation of clouds if they are connected via
a local minimum, valley, or saddle point in 7.

3. AT, should be based on the expected drop in a cloud’s
T when moving from its optically thickest area to its edge. We
assumed this to be about 20°.

4. AT, — AT, as well as AT, should exceed the pixel to
pixel variability of a cloud’s T as well as the variability or noise
introduced by the sensor. In our case, this was assumed to be
no more than 5°.

5. In selecting AT, one should simply adhere to the pre-
vious two constraints.

The current DAS implementation is very effective when
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different clouds are either separated by clear sky or a signifi-
cant drop in T or similarly when they each have a definitive
core. In case of multilevel cloud decks or tightly spaced clouds,
DAS causes some clouds to be merged because of the homo-
geneity in brightness temperatures. Ideally, all the available
channel information should be used to establish a feature
space in which a cloud’s core is preserved as a separate cluster
and one where edges of clouds at different altitudes differ
greatly. We expect that a marriage of our cloud-object-based
view and cloud-clustering techniques such as those described
by Gallaudet and Simpson [1991] or Gallegos and Hawkins
[1993] will yield a highly accurate technique for identifying
individual clouds. In this case, fewer assumptions or arbitrary
choices are needed in establishing the various thresholds of
subfeature domains used in DAS. Such improvements are top-
ics of future study.

B.2. Cloud Tracking Algorithm

CTA operates on ellipsoidal equivalents of the MCS iden-
tified by DAS. Ellipsoidal representations were used to limit
the computational load. To assess the effect of using ellipsoids
instead of the true sample distribution, the ratio between the
number of pixels outside the ellipsoid and the total number of
samples could be calculated. Ellipsoidal equivalents are estab-
lished as follows. The first step is to compute the center (lon,,
lat,) and orientation of the set of pixels that form an MCS. The
parametric line equations of the major and minor axes were
established by minimizing the summed absolute deviation to a
straight regression line instead of the square distance because
it is known to be more robust [Press et al., 1990, p. 558]. The
axis with the smallest spread of points around it was used as the
major axis. The orientation or slope angle in the major axis is
denoted by 6.

Once the major X and minor Y axes were established, their
respective half lengths a and b were calculated on the basis of
the standard deviations &y and &y of the points with respect to
the major and minor axes. Using standard deviations instead of
average distances to the axes assures that points far away from
the axes are weighted slightly more, thus better preserving the
MCS’s aspect ratio. Thus &y and G are obtained by taking the
standard deviation of the distance d of every point (x, y) to the
minor and major line equations y = px + g, respectively,
using [Strang, 1980, p. 107]

-

One can also compute & and oy using

P+ (y—g@HA +p)—(x+ply—q)°
1+ p?

E{X} = E{X cos 6 — Y sin 6}

E{Y} = E{X sin 6 + Y cos 6}

0% = Joxrx c0s? § + Tyry sin®> 6 — ayry sin 6 cos §

oy = \/O')(rX sin® 6 + oyry cos? § — oyry sin 8 cos 6

which are based on a two-dimensional rotational matrix trans-
formation between the longitude/latitude coordinates (X, Y)
and the ellipsoid’s coordinates (X, Y). E represents the ex-
pectation operator.

The half lengths a and b are scaled by a factor o to match
the area 4 of the underlying MCS. On the basis of the con-
straint that A = abm = «a0x0y, a and b are obtained from
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A
T mozoy
a= \Jaox
b= \/—O(-O'{/

A simple least squares based regression on the pixel loca-
tions to obtain the major axis produced unsatisfactory overlap
between the MCS and its ellipsoidal equivalent. Tests on sim-
ulated ellipsoidal clouds showed that such an approach per-
formed best on clouds with large aspect ratios while the slopes
of more circular clouds were severely underestimated. The
most compelling evidence that this method is inadequate is
that least squares regression between longitude and latitude
produced very different results from the reverse regression.
This discrepancy is due to the fact that least squares looks only
at the distance perpendicular to one of the axes and not to the
regression line itself as is the case in the algorithm described
above.

Two MCS in consecutive time slots M, and M, , , belong to
the same system if either centroid falls inside the ellipsoidal
equivalent of the other (overlap). The underlying assumption
is that these two MCS are identical if the smallest one has not
traveled (forward or backward in time) outside the reach of the
other. If multiple MCS at time ¢ + 1 fall within the vicinity of
M,, M, is assumed to have split up, and all these MCS are
associated (every MCS across all time steps has a unique nu-
merical label, and association occurs by keeping track of which
labels belong to the same system). Similarly, if multiple MCS at
¢t fall in the vicinity of M, ,, then these MCS are assumed to
have merged into M,,,. This scheme properly associates
merging and splitting systems. To avoid a break in the evolu-
tion of an MCS due to bad or missing data, the association
process was performed on data from one and two time steps
back in time. This approach is similar to the one described by
Williams and Houze [1987], who track MCS over 3-hour inter-
vals and require 50% overlap between MCS in consecutive
time slots instead of our centroid-based ellipsoidal inclusion
criterion.

A few words about the tagging system are needed. All MCS
in the first time slot ¢, receive a different label. Every MCS in
the second time slot ¢, that overlaps with one in ¢, receives that
MCS’s label. If an MCS in ¢, overlaps with multiple ones in ¢,,
then they all receive the same label (from one of these MCS in
t,). This relabeling of a set of an MCS in a previous time step
(e.g., 7= 4 = 2)is stored in a table, so that at the end all MCS
are relabeled using this information. This assures proper merg-
ing. This procedure is repeated for all consecutive time slots.
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