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Abstract

The volume of satellite data amassed by modern day weather and climate satellites is so enormous that it has
become virtually impossible for researchers to access the original resolution data collected by the satellites. Typically,
researchers are forced to deal with lower resolution reduced data (e.g. cloud cover or temperatures) and often at
a resolution degraded by one to three orders of magnitude when compared with the resolution of the original data. The
uncertainties in the reduced data are often unknown. This state of affairs will only get worse, since the data to be collected
under the guidance of NASA’s global change program may increase by several orders of magnitude in the coming
decades.

We need to experiment with mathematically rigorous ways to tame the original data without significantly degrading
the information content. Compression of original data by objective mathematical techniques is a promising approach.
This study adopts recent compression techniques developed in the field of communications and applies them to weather
satellite data. Typically, these techniques compress the raw data by factors ranging from 10 to 100. The compressed data
can be decompressed to retrieve the near original data at the site of the user. The mean error in the compres-
sion—decompression process varies from a few percent to several percent. As a demonstration, we consider the advanced
very high resolution radiometer (AVHRR) radiances with a nadir resolution of 1 km x 1 km. For this demonstration, we
adopt a well understood compression technique which is the so-called vector quantization technique. Several vector
quantization techniques (full-search, tree-search, pruned-balanced-tree, greedy-tree and pruned-greedy-tree) are com-
pared in performance and ease of implementation. The discussion focuses on the pruned greedy tree-structured vector
quantizer because it is highly suited to the compression of AVHRR satellite images. For the case considered here, visual
and scientific reproducibility of the original high resolution images are very good. The rms error for roughly 95% of the
pixels in a scene is within 2%, even at a 32: 1 compression ratio. The error in spatially averaged fields is less than 0.1% for
averaging scales in excess of 50 km x 50 km. Some important spatial structural information is lost, however. It is found
that the same image when compressed using JPEG standard shows significant loss of numerical accuracy at the same
compression ratio of 32: 1. But improvements and developments in compression techniques can minimize these errors
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and afford researchers the luxury of storing and working with high resolution data at roughly at about 0.03 of the space
required by the original data. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

NASA is currently embarking on the ambitious
earth observing system program which will make
an unprecedented attempt to obtain simultaneous
high resolution data from the physical, chemical
and biological state of the land-ocean—atmosphere
system [27]. The resulting data rate will exceed, by
several orders of magnitude, the current data rate
from instruments such as the Advanced Very
High-Resolution Radiometer (AVHRR) aboard
NOAA'’s polar orbiting satellites.

The following example illustrates the enormous
magnitude of the data volume. Per day, the 5 chan-
nel AVHRR at full resolution (1kmx1km at
nadir) generates about 1 billion samples (radiances)
stored in 2 billion bytes. Typically, to answer
a simple question concerning the response of clouds
to the warming trend of the 1980s, we need to
analyze at least 15 years of data. Because of the
formidable nature of the problem, the global
AVHRR data are not archived at full resolution.
The archived data set is a sampled and averaged
data with a spatial resolution coarser than the
original by more than an order of magnitude. The
volume of even this sampled data sets are too large
for most of the academic research community,
which resorts to using the reduced products, such
as cloud fraction averaged over a 100 km x 100 km
region. The full resolution data is either permanent-
ly lost or mostly inaccessible to the community at
large. The problem with sampled or averaged data
sets is the loss of spatial structure, which could
prove to be a fatal loss for problems related to the
spatial structure of clouds [2].

The scientific community faces the challenging
task of taming this vast jungle of data. It is not clear
how the community will face this challenge. Most
likely, the data will be severely underutilized, as
is the case with most of modern day satellite data.
By under-utilization, we mean that the community
will access only sampled or averaged data sets.
For example, even in the highly successful earth

radiation budget experiment (ERBE) data, only
a percent or less of the total data (the so-called
standard data products) has been analyzed or pub-
lished. There are two distinctively different types of
issues. First, in the case of high resolution data, lack
of adequate satellite onboard data storage facilities
necessitates sub-sampling or averaging, to reduce
data flow rate. Second, a majority of research com-
munity lacks adequate computer and storage facili-
ties to attack even the sampled data set.

It is conceivable that by the middle of the next
century, improvements in computer technology
will make it feasible for a majority of the research
community to handle high resolution data. Clearly,
to prevent further loss of valuable global data, we
need to develop strategies to preserve the informa-
tion content of the data without overstressing the
storage capability. Compression of data by math-
ematical techniques, without significant loss of in-
formation, is one of the attractive alternatives to
this dilemma. The purpose of this work is to ex-
plore whether compression techniques developed
by the information theory researchers can meet the
challenge facing the global change community.

For the purpose of this exploratory work, we
adopt a state-of-the-art and well documented
technique, namely, vector quantization methods
(VQM) as a means of data compression. We apply
VQM to AVHRR data collected by NOAA polar
orbiters (weather satellites). The AVHRR image
consists of two visible, one near-infrared and two
far-infrared (so-called window) channels. The vis-
ible channels record the reflected solar radiance
from the surface—atmosphere column and the in-
frared channels record the radiation emitted to
space by the earth-atmosphere system.

2. What is image compression?
Digital image compression refers to any process

or algorithm by which the amount of computer
memory required to store the original raw data is
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reduced. The amount of data reduction depends on
the compression algorithm and the types of images
under consideration. Existing compression tech-
niques fall into two broad categories: lossy and
lossless. The lossy techniques, by definition, intro-
duce an amount of degradation which depends on
compression ratio, whereas lossless techniques
show no degradation and typically can achieve
a compression ratio of 2: 1. Such a low ratio is not
sufficient for the type of images considered in this
work and is therefore not discussed. For lossy tech-
niques, image reproducibility (quality of the
decompressed image) becomes, aside from com-
pression ratio, a major factor in algorithm selec-
tion. During the course of this article, quality,
unless specified otherwise, refers to visual repro-
ducibility of the images in terms of sharpness,
texture, edges, etc, as well as the numerical
reproducibility in terms of statistical parameters
and other performance criteria which will be dis-
cussed later on. Recently, some works have been
reported in the area of lossy compression tech-
niques for satellite images [15,21] with high com-
pression ratios.

Existing lossy techniques fall into the classes of
predictive coding and transform coding. The word
coding is synonymous with compression. Predic-
tive coding takes advantage of the dependency of
a sample on neighboring pixels to compress the
data. The determination of the optimal predictor
coefficients can be achieved using efficient recursive
techniques based on a set of images. In this case the
predictor is fixed. Once a predictor is designed the
compression consists of two stages: (1) a predicted
image is created by replacing the value of each
sample by the value predicted from previous sam-
ples, and (2) an error image is then formed as the
difference between the actual and predicted image.
Instead of storing the original image, the first
sample in the traversal path is stored along with the
parameters that define the predictor, and the quan-
tized error image. The idea is that prediction tries
to remove redundancy in the image data. Thus, the
differential or error image has very little redund-
ancy which is exhibited in its probability density
function (pdf). The model for the pdf of the error
image is typically Laplacian, as shown in
Fig. 3 with much smaller variance than the image

itself. It is easy to show that the average bit rate
reduction due to prediction is logarithmically re-
lated to the ratio of variances of the original and
error images. Hence compression is obtained. At
the receiver the reverse process is applied, the pre-
dicted image is generated from the first traversal
point and the received predictor error image is
added to obtain the decompressed image. Accept-
able compression ratios achievable with this
method are around 3: 1. Even though implementa-
tion is very simple, its application is limited to
certain types of images [10,12]. Using adaptive
predictive coders or compressors, higher compres-
sion can be achieved, however, at significantly in-
creased complexity [10,12].

Transform coding, another lossy technique, re-
duces the redundancy of neighboring pixels by
transforming a block of pixels into a block of coeffi-
cients such that the energy in the original block is
packed into as few transform coefficients as pos-
sible. Then, only the coefficients with significant
variances need to be quantized and stored, thus
achieving compression. The Karhunen-Loeve
transform (KLT) has been shown to be the opti-
mum transform [10,22]. However, the KLT is com-
putationally intensive and image dependent. Hence
in practice, other suboptimal transforms such as
the discrete cosine transform (DCT) are used which
are machine efficient [6]. In practice, no single
coding technique achieves the required high com-
pression ratio and good quality. In fact, a combina-
tion of both lossless and lossy techniques are used
to achieve as much compression as possible,
example, the JPEG standard. Since transform cod-
ing is a memoryless scheme, unlike the above pre-
dictive coding, the noticeable degradation is
usually in the form of blockiness in the reconstruc-
ted image. Transform coding techniques result
in much higher compression than the predictive
compression techniques for the same loss in
information.

In the compression methods mentioned above,
the image of interest is quantized using scalar quan-
tizers (quantize one sample at a time). Quantization
refers to a process of converting a signal value of
arbitrary accuracy into a finite one from an allowed
set of values. For example, if the allowed number of
values equals 256, then quantization of a signal
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value will result in an 8 bit number. The quantizers
depend on the probability distribution of the input
image for optimality, and their design is based on
Lloyd’s iterative algorithm which tries to minimize
the overall mean square error (MSE) between the
input and quantized image [18]. Tables of optimal
decision and reconstruction levels can be found in
[12,11]. Quantization is achieved by replacing
a sample value with a reconstruction code that is
dictated by the decision level closest to the sample
value. According to Shannon, a quantizer operat-
ing on a block or vector of consecutive samples will
always outperform a scalar quantizer in terms of
signal power to noise power ratio (SNR), for the
same bit rate [28]. This has given a large impetus to
the development of efficient block or vector quan-
tizer design algorithms [7]. Moreover, as will be
shown, the vector quantizer (VQ) has a simple
decoder (decoder is the same as the decompressor)
that requires no computation.

For these reasons, we focus on vector quantiz-
ation as a means to compress digital images. The
next section gives a brief description of fixed-rate
vector quantization methods followed by Section 4
which outlines a variable-rate, tree-structured vec-
tor quantizer and describes how to generate a code-
book. Sections 5-7 deal with the issues in VQ
codebook design and the criteria for choosing the
right type of image database for training the VQs.
Application of these VQ methods to AVHRR im-
ages will be discussed in Section 8 followed by
concluding remarks in Section 9.

3. Fixed rate vector quantization

In this section we discuss the application of vec-
tor quantization to 2-dimensional images (data
sets). The original image X is first decomposed into
rectangular blocks of L samples, say N total. An
image vector X,, (X ={X,|n=1,...,N}), is for-
med by ordering the samples of a block sequen-
tially. The vector quantizer Q maps these L-
dimensional image vectors (elements of Euclidean
space RY) into a finite set C* of M code vectors.
Thus,

O:RE—C5,

where C = {Y,,|m=1,2,...,M}. A codevector or
codeword is a predetermined vector that is repre-
sentative of some part of the image to be com-
pressed. Vector quantization (encoding) is the
process of assigning a codeword Y, to each image
vector X,. Instead of storing the vector X, the
index m of the ‘best’” matching codeword (will be
defined later) is stored. In terms of storage require-
ments, each vector to be compressed is replaced by
an index (an integer) of log, M bits corresponding
to the best code vector, or equivalently, (1/L)log, M
bits per pixel. For example, a VQ with a codebook
(a codebook refers to a predetermined table of
representative vectors) containing 256 16-dimen-
sional code vectors (M =256, L = 16) requires
8 bit numbers (8 = log, 256) to index a codeword,
which translates to a storage requirement of 0.5 bit
per original image sample, and a file size compres-
sion ratio of 1/0.5, where I is the number of bits per
sample in X, the original image (I is 16 for our
AVHRR images). But to obtain the actual data
compression ratio, we need to use I = 10, because
the data has a dynamic range of only 10 bits. Since
each block of the original image is now stored with
the same number of bits in the compressed image,
the quantizer or compressor is called a fixed-rate
quantizer. One might be tempted to conclude that
larger image and code vector dimensions would
increase compression, however, the visual quality
of the reconstructed image will be poorer because
of blockiness and edge degradation [8.29]. A
remedy is to increase the codebook size M, but
on the other hand, this increases the storage re-
quirements and computational load. This funda-
mental trade-off between compression ratio and
image reproducibility will be addressed. Once the
codebook is extracted from a carefully selected set
of training images, image decompression (decod-
ing) is simply the process of replacing the indices in
the compressed image with the corresponding
codewords.

The VQ as described above is called a full-search
VQ because it has to search the entire codebook to
find the ‘best’ matching code vector [9], whereas
other tree-structured VQs allow for more efficient
codebook searching (see below).

The most common measure for matching two
vectors x and y of dimension n is the Euclidean
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distance denoted by d(x, y).

dx,y) = |Ix — yl*

= Z (x; — y)*. (1)
i=1

Once the optimal codebook is found, the best
match for any vector (block) X, in the input image
is independent of the rest of the image. In other
words, compression reduces to choosing a code-
word Y, such that the sum of all d(X,.Y,,) 1s mini-
mized over the entire image.

Before compressing an input image, one has to
design the optimal codebook from a set of represen-
tative images. This can be accomplished by using
the generalized Lloyd’s iterative algorithm, popu-
larly known as the Linde, Buzo, Gray (LBG) algo-
rithm, and is an unsupervised training procedure
[17]. The algorithm iteratively increases the size of
the optimal codebook in the manner described in
the flow chart of Fig. 1. For more details on the
design procedure, the interested reader is referred
to [17].

In order to determine the centroids of the
partitions which determine the optimum vectors of
the respective partitions in the MSE sense, the
underlying probability distribution must be known.
However, in practice when the probability distribu-
tion is not known a priori, one uses the arithmetic
mean. For details of the algorithm, the interested
reader is referred to [7]. The algorithm is based
on the superposition principle, that the distance
of the whole image to the best codewords is mini-
mized if the distance for each block is minimized.
The resulting codebook 1s the one that minimizes
the sum of all distances between image vectors and
their representative codewords. The codeword
that will replace the image vector in the compressed
image is the one that lies closest in distance
to the image vector. Once a codebook is defined,
the distortion D due to compression of image X is
defined as

N

D = E d(XmQ(X!l))'!

n=1

where N is the total number of image vectors,
X, is an image vector and Q(X,) the codeword

that represents X, best in terms of Euclidean
distance.

The full search VQ or simply FVQ, has no struc-
ture in the arrangement of the code vectors. In
general, therefore, (1) has to be calculated for each
input X, and results in a time consuming search for
large codebooks. However, it is possible to improve
the search efficiency by exploiting the triangular
inequality in the Euclidean space [13]. But with
a tree structured VQ (TSVQ) a considerable reduc-
tion in computations can be achieved [9]. As an
example, consider a binary tree structured VQ of
depth 4 in which each node in the tree represents
the centroid of a particular cluster of the input
image. Starting at the root node, the tree is grown
one layer at a time using the generalized Lloyd’s
algorithm. For a binary TSVQ of depth K, the
number of vector searches required to obtain the
best match can be shown to be log, K as opposed
to K for an FVQ [7]. During the compression
process, an input vector is compared with the two
node vectors at level 1 and assigned a 0 or a 1 de-
pending on whether the left or right node (centroid)
was the closest. A similar operation is carried out at
the next level and an additional bit is added to the
path, till the terminal node is reached. The index
(bit sequence) corresponding to the path is stored
for each input vector instead of the actual vector,
thus giving rise to compression. It is known that the
TSVQ is suboptimal and performs poorer than the
FVQ in root mean square (rms) error [7,24,3].

In FVQ and TSVQ, the same number of bits is
allocated for all the vectors of an image. This results
in a fixed rate VQ which implies that spatially
coherent (shades) and spatially noncoherent (edges)
blocks are encoded with the same number of bits
irrespective of their probability of occurrence.

The visual effect of quantization (both scalar and
vector) of an image i1s twofold: (a) edges appear
jagged and (b) shade regions appear patchy. Due to
the fact that our visual attention is naturally fo-
cussed on high contrast areas, the effect of edge
degradation is more apparent. Therefore, by
expending more bits to represent areas of high
contrast, better visual quality for the same average
bit rate of a fixed rate VQ can be achieved. Or
conversely, for a given signal power to noise power
ratio (SNR), higher compression ratios can
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Final codebook
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l<i<m

m<—2m

Fig. 1. Flow chart for the LBG VQ design algorithm.

be achieved from a variable rate VQ than from
a fixed rate VQ. Note that this approach does not
necessarily mean that numerical reproducibility is
also enhanced.

4. Variable rate vector quantization

As mentioned above, areas with high details,
such as edges, can be coded more accurately (with
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more bits) than areas with low details so that the
overall mse is reduced. Since each original image
vector (block) is now replaced in the compressed
image by an index (an integer) whose length varies
according to the type of block (edge or shade), the
VQ is called a variable-rate VQ. Since highly de-
tailed regions are relatively fewer than low activity
regions in most practical images, the variable rate
coding will result in an average bit rate lower than
a fixed rate scheme. A number of variable rate VQs
can be found in [7,19,5]. One example is where the
output of a full-search VQ is encoded into a vari-
able length code using the Huffman coding scheme
which is similar to the UNIX “compact” command.
The Huffman method assigns larger codewords for
the indices that occur less frequently, i.e., for edge
blocks, than for the indices that occur more fre-
quently (shades). This is suboptimal. Alternative
approaches to the design of variable rate VQs do
exist and can be categorized into constrained, adap-
tive and finite-state VQs. Among these the most
important variable rate VQs are extensions of
TSVQs. Here, one starts with a large TSVQ and
optimally prune back branches to obtain a variable
rate VQ using the pruning algorithm due to Brei-
man, Friedman, Olshen and Stone (BFOS) [4]. The
optimality is in the sense of distortion-rate. This is
called a pruned tree-structured VQ (PTSVQ). An
obvious variation of this scheme is to use the BFOS
pruning procedure to trade off average distortion
with average entropy. This type of VQ is called the
entropy-pruned TSVQ. In yet another method, one
can jointly optimize the VQ and the variable rate
codes. This is known as the entropy-constrained
VQ. On the other hand, one can grow an unbal-
anced tree one node at a time in such a way that the
node that results in the greatest decrease in distor-
tion for a given rate increase is split. Naturally this
results in a variable rate TSVQ but is suboptimal.
We will only describe this suboptimal variable rate
VQ in the following. Details on other constrained
variable rate VQs can be found in [7].

4.1. Algorithm for designing a variable-rate VQ

In this paper, we implement an algorithm to
design a VQ with a tree structure that has a vari-

able number of nodes and to prune back the tree to
achieve the lowest mse for a given compression
ratio. As mentioned above, this type of VQ will use
indices of different lengths, corresponding to the
different nodes in the tree, to represent each block
of the input image and is shown to outperform VQs
that use fixed-length indices [25,26]. Usually,
a TSVQ is designed one layer at a time using the
generalized Lloyd’s algorithm (GLA) [7]. The root
node is the centroid of all vectors from the training
images. Then the first layer is grown by splitting the
root node into two initial nodes — by perturbing
the root node slightly, and then these two nodes are
optimized using the GLA. Each new layer of the
tree is thus designed by splitting each intermediate
node of the previous level into two ‘perturbed’
levels followed by the GLA. This tree is a balanced
tree and results in a fixed rate TSVQ because the
depth to every terminal node is the same.

Instead of designing (growing) one layer at
a time, Makhoul et al. [20] proposed an alternative
design method that splits the node that will result in
the greatest distortion reduction. This algorithm is,
therefore, ‘greedy’ because it splits each node with-
out looking ahead, i.e. without taking into account
its effect on the future performance. The resulting
tree is unbalanced, having different depth to differ-
ent terminal nodes. This will, therefore, require
variable wordlength addresses to different terminal
nodes and hence is a variable-rate VQ.

Riskin and Gray have proposed another method
of growing an unbalanced greedy tree [25,26]. Asin
Makhoul’s method, the tree is grown one node at
a time based on the slope of the rate-distortion
curve. In order to determine whether a node is to be
split, a ‘goodness’ of split is defined as the decrease
in distortion for increase in average rate. The node
with the highest goodness of split is always split.

4.1.1. Tree functionals

A few definitions and terminologies pertaining to
a TSVQ will be useful. For more details on tree
definitions, one can refer to [14]. A tree denoted by
T is a set of nodes {to,1;.... }. The set of terminal
nodes or leaves is denoted by T. The root node of
a tree is usually denoted by to. A subtree S of T is
a tree whose root coincides with that of T. A sub-
tree is formally denoted by S<T. A tree functional
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is a real-valued function on a tree and its subtrees.
Examples of tree functionals are the average length
I(S) and average distortion &(S). Note that /(S) in-
creases monotonically as the tree size increases and
that 6(S) decreases as the tree grows. With this
preamble, we can describe the idea behind the
GTSVQ design.

4.1.2. Greedy tree algorithm

Consider a tree T with its terminal nodes (leaves)
denoted by T. Suppose that we split a node ¢ of
T into left and right terminal nodes t;, and tg,
respectively. Let the average distortion and rate
measured by the tree T be D and R, respectively,
before splitting ¢ and let the corresponding quantit-
ies be D and R after the node ¢ is split. Each node
gives rise to a certain average encoding rate and
a corresponding distortion. If we increase the depth
of a certain node by splitting it further, then the
average encoding rate will increase with a corre-
sponding decrease in distortion. Let the changes in
distortion and rate due to splitting be represented,
respectively, by AD and AR. In order to grow the
tree, one should split the nodes at different depths.
Then the rationale for splitting this node should be
the largest magnitude of the slope of distortion rate
curve, because we want to incur as little rate in-
crease as possible with as large a decrease in distor-
tion as possible. We must therefore calculate this
slope at each node splitting. This magnitude is
expressed as

% =— AD/AR.

Note that AR is positive but AD is negative and
hence the negative of this distortion rate change
ratio is the magnitude of the slope. Since the aver-
age distortion for the tree is the sum of the node
distortions, we can write

D= % p()d(j)+ p@)d(), 2
jET, iF1

R= ) p(I)+ p@)). 3)
JjeT, j#1

In the above equations, we have separated the effect
of the node being split from the rest of the nodes.
After splitting the node ¢, the distortion and rate are

given by

D= ; Y p(() + plt)d(t) + plt)d(tr),  (4)
JeT, j#1,.tp

R= t Y pGIG) + pele) + ptlte):  (5)
JET, j# 1,1

Hence the changes in D and R are expressed by
AD =D — D = p(t)d(tr) + p(ta)d(tx) — p()d(0), (6)
AR =R — R = p(ty)l(tr) + p(t)l(tr) — p)I(2). (7)
Using the fact that

p(tL) + pltr) = p(1), (8)
I(t,) = l(tr) = I(t) + 1, ©)
we can rewrite AD as

AD = - pm[d(r) -~ Bie) - %d{m], (10)
which can be simplified to

AD = — p(t)[d(t) — prd(t) — prd(tr)]. (11)

where we have used the fact that p; = p(t,)/p(t) and
pr = p(tr)/p(t). Note that p; and pr respectively
represent the proportion of vectors that are as-
signed to the left and right children of the node t.
We can similarly write

AR = p(t) + p(tr) = p(t). (12)

Thus the magnitude of the slope of the distortion
rate function is given by

o= — 52 = ) — pud(t) — prcle). (13)

Based on the above argument, we can design
a variable rate VQ by designing a TSVQ, but one
node at a time. For illustrative purposes, we only
describe a binary TSVQ. First we have the root
node which represents the mean value of the input
training vectors. It is then split into two nodes
using the LBG algorithm. At this point, the tree has
a depth of one with an average rate of 1 bit/vector.
Next we have to decide which of the two nodes to
split. For this purpose, first the left node 1, is split
using the LBG algorithm and its «; is calculated.
Similarly, the right node tz is split into its two
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children and its o is calculated. The slopes are then
entered into a stack. Then the node to be actually
split is the one with the largest o, and the corre-
sponding node is denoted by t,;,. Once the node
has been chosen for splitting, its corresponding o is
removed from the stack. The process is continued
until the desired average encoding rate is reached.
For details on the flowchart of the algorithm, one
may refer to [25].

In this paper, we have designed greedy TSVQs
and compared to other VQs in performance as
applied to AVHRR satellite images.

5. Criteria for selecting a set of training images

The heart of block data compression methods is
the codebook, which is basically the alphabet of the
data set under consideration. In other words, it
contains a representation of all the intensity pat-
terns (spatial patterns) that can occur in any fixed
size block (variable size blocks are possible, but not
discussed here). We choose 4 x4 samples as our
block size for all the different algorithms. Based on
this definition of a codebook, the training images
need to be chosen such that all possible blocks
that can occur in a given data set (e.g., all AVHRR
data sets) are present in the training images. If
for instance, the training images in the AVHRR
case are selected to contain mainly clear sky areas,
then cloudy regions in the test images will not be
represented very well. This bias is beneficial if it is
known beforehand that the compressed images will
only be used for clear sky studies, because the clear
sky regions will be represented by many code-
words, hence lower noise levels in the clear sky
regions than in the cloudy regions. Inducing a bias
in selecting the training images makes the com-
pressed images application specific, something
that needs consideration in selecting the training
images.

Theoretically, for an image source that is ergodic,
an infinite number of images is required to train the
vector quantizers. However, it is shown that a prac-
tical quantizer will approach the performance of
a true quantizer with a finite number of images [7].
To generate a codebook that would represent
all areas with both good visual quality and high

numerical accuracy requires generating a codebook
with several (5-10) images and many codewords,
thus resulting in a low compression ratio. Therefore
the importance of knowing ahead of time the class
of images to be quantized and not compressing any
other class with the same codebook cannot be over
stressed.

Compare this process with a compression
method that represents each letter by a number
instead of a complex pattern of pixels. If we train it
only on English text and then try to use the result-
ing codebook to compress Greek text, we will get
illegible text back after compression, because the
encoder replaced each Greek symbol with the best
English substitute. So in order to make the code-
book as general as possible, we need to feed it with
text from many languages. By doing so, the number
of codewords increases and the compression ratio
decreases. This tradeoff between applicability of the
codebook and compression ratio can be bypassed
to some extent by carefully determining the ap-
plications and creating a different codebook for
each of them. For example, if the compression is
generally used on text of one specific language, it is
more advantageous to use a separate codebook for
every language plus maybe some combinations,
such as English and Greek for scientific text. An-
other approach is one in which the scientist decides
that he/she is not interested in Greek symbols in an
English text, and decides to use an English code-
book. The different approaches should be clear
from this metaphor.

6. Comparison of complexity of VQ algorithms
6.1. Codebook generation

Machine capabilities and time constraints are
important criteria for selecting which algorithm to
implement. In generating codebooks, the FVQ can
be designed in such a way that the final codebook
of a given size can be generated by starting with
a single codeword and progressing as a power of
two until the final codebook size is obtained. Since
the intermediate codewords need not be stored, the
FVQ takes the least amount of machine memory
but the greatest amount of time. FVQ has to find




254 K.S. Thyagarajan et al. [ Signal Processing: Image Communication 14 (1999) 245-267

the best match for each input vector by looking at
every codeword in the codebook for each iteration
of the GLA. Since codebook size increases as
a power of 2 with each new bit, the computational
load increases exponentially.

Tree-structured VQs (TSVQ) are computation-
ally more efficient due to reduced search time. For
each GLA iteration there are 2log, M searches as
opposed to M, where M increases as 2' (I is the
number of bits required for indexing and M is the
current number of codewords). From this it can be
seen that the computational load for TSVQs in-
creases linearly with each increase in codebook size.
The disadvantage is the amount of memory re-
quired to store a tree which is nearly twice as much.
For FVQ the codebook requires L* M floating
point locations for storage, whereas TSVQ code-
books require L* (2% M — 1) floating point loca-
tions plus extra bits to denote terminal nodes,
where L is the vector dimension.

A greedy tree is grown one node at a time as
opposed to a layer at a time and will have many
more codewords than an FVQ of equivalent rate.
Therefore, we may expect the codebook generation
time to be comparable to that of an FVQ. The
greedy TSVQ requires an amount of memory
greater than other TS methods. Even though the
codebook is of the same average rate, it contains
more than three times the number of codewords,
hence requiring extra space.

6.2. Encoding

Encoding speed should be considered as a cri-
terion as well, especially if there are many images to
be transmitted from one location to another within
a short amount of time. The time it takes to encode
an image is strongly dependent on the VQ method
— FVQ requires more number of vector searches
than the TSVQ —just as codebook generation does.
The argument about the number of calculations per
vector applies here also. The slowest method would
be FVQ due to the fact that it has to search the
codebook exhaustively to encode each vector
(hence it is inherently the least efficient, searchwise).
The tree-structured methods (variable rate VQs) all
have similar encoding times and are approximately

three times faster than the full search (experi-
mentally observed).

6.3. Decoding

For decoding purposes, all the discussed
methods involve replacing the codeword index with
the codeword itself. The amount of time used to
determine the codeword assigned to an index is
solely a factor of how many bits the index contains
and how fast address computations can be carried
out. So decoding speed between the discussed VQs
at a certain rate is the same. The real difference
between the methods is codebook design and en-
coding speed. Other overhead includes the time it
takes to read in the encoded image and the corre-
sponding codebook. but this would be similar for
all methods.

7. Judging image compression based on visual
and scientific reproducibility

Whether a compressed image will be used for
visual or scientific purposes dictates the compres-
sion ratio and to some extent the compression
method. For visual reproducibility, slight contrast
enhancing methods are preferred because the
human tends to focus mainly on areas with high
contrast. This adds spatially nonuniform noise
power to the original image, since only the
high contrast areas are affected. For scientific
reproducibility, the noise power should be spatially
uniform and close to the noise power of the
scanner. In terms of the vector quantizers, high
compression ratios ( = 64) can be used for visualiz-
ation and lower values (< 32) for scientific
reproducibility.

Visual performance is highly subjective and de-
pends on the a priori knowledge about the content
of an image. An example in the case of AVHRR
images is the gradual and small variations in reflec-
tivity (channel 1) for clear sky regions which are
often suppressed during compression and might be
noticed by a knowledgeable person even though
the visual reproducibility for a layman seems
very high. The ultimate goal in terms of scientific
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reproducibility is achieved when the compressed
images are identical to the originals except for
a noise pattern, with a level close to the scanner’s
noise level. This type of constraint is not feasible for
any significant ( = 8) compression ratio, unless the
image is of deterministic character. Acceptable sci-
entific performance levels depend on future ap-
plications of the compressed images.

Data used for scientific purposes other than
looking at the color coded or gray scaled images
requires more than just visual reproducibility. The
main goal for visual reproducibility is recognition.
One application for highly compressed, visually
acceptable images is their use in browsing through
a large data set in search for the right region (e.g.,
convective clouds, hurricanes). Scientific reproduci-
bility (numerical accuracy) plays in many areas of
research, such as climate model verification, a much
larger role than visual reproducibility and puts
therefore tighter constraints on the applied com-
pression techniques. Scientists have different inten-
tions with the data, which places different
constraints on the criteria used for scientific repro-
ducibility. For example, clear sky analysis of
AVHRR images requires accurate representation of
low reflection (low contrast) areas, whereas cloudy
samples surrounded by other cloudy pixels do not
need to be represented with higher accuracy as long
as they are not merged with clear sky samples.
Research focussed on the distribution of optically
thick clouds does not require accurate reproduc-
tion of clear sky samples. The final decision de-
pends on: future usage, storage limitations,
scientific value of the data set, etc. For demonstra-
tion purposes we selected a compression ratio of
32:1 which shows high visual reproducibility
whereas the numerical reproducibility is slightly
better towards high intensity, high contrast areas in
the image. Suggestions for modification of the rate
and methods to bypass these problems completely
will be discussed.

8. Application to AVHRR satellite data sets

Four different vector quantization methods as
described in the previous section are applied to two
large AVHRR data sets. Comparison is based on

quantitative as well as qualitative performance
measures which will be described below.

8.1. Specifications of the AVHRR data sets

Advanced Very High Resolution Radiometer
(AVHRR) was first flown on TIROS-N in 1978,
and since then on the NOAA satellite series. The
AVHRR data has a resolution of 1.1 km at nadir,
a 10-bit dynamic range, a ground swath of
2700 km, and contains intensities from five spectral
bands (channels) with respective bandwidths:
bandl 0.58-0.68 pm. band2 0.725-1.1 pm, band3
3.55-393 ym. band4 10.3-113 pm, band5
11.5-12.5 pm [16]. The measurements from the
radiometers were calibrated, converted to the phys-
ical units, multiplied by 100, truncated to whole
numbers and stored in two byte integers (16 bits per
sample). This process worked well because of the
1% noise level of the instruments and the final
values for all channels fell between 0 and
216/100 = 655. Noise propagation will not be con-
sidered but can play a very important role in setting
the data compression parameters.

Two data sets (2048 x 1024 samples) were used in
the data compression experiments and divided into
four quadrants of 1024 x 512 samples, hence result-
ing in eight data sets (images) per channel. Quad-
rants 1 and 3 were used in the training set to
generate the codebooks of the various fixed and
variable-rate vector quantizers, whereas the other
four images from quadrants 2 and 4 were used as
test data in the comparison between the different
compression methods. Because of similar patterns
in all the channels, it was decided to focus on
channel 1.

8.2. Applied compression methods

The pruned greedy tree-structured vector quan-
tizer (PGTSVQ) was applied to spectral channels 1,
2, 4 and 5 using Riskin’s method, generating a sep-
arate codebook for each channel. Each VQ used
4 x 4 pixel blocks resulting in a vector dimension of
16 (L = 16) which was a tradeoff between blocking
effect and compression ratio. The codebooks were
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grown to an average rate of 8 bits/vector which is
equivalent to 0.5 bit/pixel or a compression of 32: 1.
For pruning the trees, the procedure is to grow the
tree to an average rate greater than the final rate. In
general, the greater the initial bit rate the better the
performance will be after pruning. This is due to the
fact that a tree with a larger number of depths will
have a greater flexibility in pruning to achieve a de-
sired target rate than the one with lesser depths. In
this work, the trees were grown to an average rate
of 12 bits/vector and then pruned back to the
required rate of 8 using the BFOS algorithm [4],
under the constraint of a maximum depth of 16
which is based on a compromise between storage
and performance. In order to compare the perfor-
mance of the PGTSVQ with other VQs, four other
VQs, namely full-search VQ (FVQ), tree-structured
VQ (TSVQ), pruned-tree-structured VQ (PTSVQ),
greedy-tree-structured VQ (GTSVQ) were applied
to the same set of images with the same parameters.
All the different VQs were designed for an average
rate of 8 (i.e. 8 bits per codeword or a compression
ratio of 32:1). A GTSVQ (ie., a greedy TSVQ
without pruning) was also designed for an average
rate of 15 and compared with PGTSVQ for rate
8 to demonstrate how certain problems could be
OVercome.

8.3. Data analysis

Two mathematically tractable performance
measures which are all based on the original image
(X), the decoded image (Y) and the difference or
error image (E = Y — X) are used in the compari-
sons. They are: (1) the mean square error (MSE)
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and (2) the peak signal to noise ratio (PSNR)
PSNR = 10log;o((max(X))*/MSE),

where max(X) is the maximum value in X. For
some figures we need a third measure, namely, the

standard deviation which is defined as

1 o/ — -
STD(X}—\/NL_ l,,; (X, — X)X, — X).
In addition to the above mentioned measures of
performance, we use scatter plots to evaluate the
quality of a compression scheme. Scatter plots of
mean and standard deviation values for the original
and compressed images based on 4 x 4 pixel blocks
give insight into possible degradations of edges and
shades. Besides the scatter plots, error histograms
were calculated to assess the measure of perfor-
mance of a quantizer. Ideally, the distribution of the
error between the original and the compressed
sample values must be unbiased and random.

The absolute error measures were based on the
maximum value in the image, 100.0 for channel 1
and 115.0 for channel 4. Some care needs to be
taken when blindly finding the maximum value
because of possible bad samples or in the case of
satellites, bad scan lines. It is advised to use the
physical upper limit as a reference for error
measures. For example, the values found in channel
1 or 2 cannot exceed 100%, because no more than
100% of the sunlight can be reflected back into
space.

8.4. Results

All graphical results are from the variable-rate
tree-structured VQ called the pruned greedy tree-
structured VQ (PGTSVQ) for a compression ratio
of 32: 1, except where specified otherwise. Note that
this compression ratio is for the file size since the
original pixels are stored as two byte integers. Vis-
ual comparisons can be made from Fig. 2, where
the original channel 1 data (ACHI1_3) is shown
(1024 x 512 samples) along with the compressed
versions using the fixed and variable-rate VQs
(TSVQ and PGTSVQ). In Fig. 2, the gray scale
resolution is 16 bits/pixel, though the actual value
occupies only 10 bits, the average bit rate is 0.5
bit/pixel with a PSNR of 41.2 dB. The visual qual-
ity of the original and the worst performer, namely
the fixed-rate tree-structured VQ (TSVQ), is almost
identical in the normal resolution images. To notice
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Fig. 2. Visual comparisons of channel 1 original and compressed images (image size = 512 x 512 pixels @ 10 bits/pixel) on two scales for
TSVQ and PGTSVQ (32:1 compression) methods. The full resolution images are on the left and the zooms of the marked square region
on the right side; PSNR = 41.2 dB for the PGTSVQ and 38.01 dB for the TSVQ:; in both cases the bit average bit rate is 0.5 bit/pixel.

the differences one has to zoom into the images.
Note that the 4 x 4 codewords of the fixed-rate VQ
(TSVQ) become visible in the blown up inserts. The
jagged edges and patchiness which often appear
around edges and high contrast areas in vector

quantized images can be overcome by increasing
the number of available codewords or by using the
variable-rate VQ (PGTSVQ) which appears almost
as smooth as the original while maintaining the
same average rate as the fixed-rate VQ (TSVQ).
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The root mean square errors (rmse) for the vari-
ous compression methods applied to channels 1, 2,
4 and 5 are listed in Table 1. The first half of the
table gives the rmse for the images inside the train-
ing set (i.e., images used in codebook generation),
and the second half for the images outside the
training set (test images which were not part of the
training set). Note that since quadrants 1 and 3
were used for training the codebooks, they will
have, on average, a lower rmse than the test images.
The rmse of the variable-rate VQs (PTSVQ,
GTSVQ and PGTSVQ) is less (88%) than that of
the fixed-rate VQs (FVQ and TSVQ), meaning that
on a pixel by pixel basis the compressed images via
variable-rate VQs were closer to the originals than
those due to the fixed rate VQs.

The percentage of pixels with an absolute error
ranging from less than 1% to less than 10% are
given in Table 2. As expected, the best variable-rate
VQ (PGTSVQ) consistently shows the highest per-
centage of pixels having less than specified absolute

Table 1

errors. The error distribution of channel 1 image
(ACHI1_3) for the best variable-rate VQ (PGTSVQ)
column of Table 1 is displayed in Fig. 3 and shows
approximately an unbiased, zero-mean, Laplacian
distribution.

The previous results pertain to individual pixel
value comparisons. However, one should also con-
sider average properties to draw meaningful statist-
ical conclusions about the effect of the applied data
compression methods. To assure correct reproduci-
bility of average properties, the average and vari-
ance of 4x4 and 32x32 sample blocks were
calculated on the original and compressed images.
Figs. 4 and 5 show the average reflectance proper-
ties for 4 x 4 and 32 x 32 blocks, respectively, while
Fig. 6 shows the variance properties for 32 x 32 size
blocks. From these scatter plots it is evident that
the compressed images have preserved the average
properties very well. Note the horizontal stripes in
Fig. 4 which are indicative of the same codewords
being used to represent a range of intensities. This is

Comparison of rmse of channels 1, 2, 4 and 5 images for fixed and variable-rate VQs for an average compression of 32:1

RMS errors in W/m? for training and test images (1:32 compression)

Fixed rate Variable rate Fixed rate Variable rate

(full search) (pruned greedy) (full search) (pruned greedy)
Images Training (RMSE) Test (RMSE) Images
Achl_1 1.860 1.759 1.982 1.928 Achl 2
Achl.3 2.658 2233 1.911 1.844 Ach2 4
Ach2 1 1.729 1.652 1.804 1.764 Ach2 2
Ach2 3 2.328 1.989 1.676 1.654 Ach2 4
Ach4_1 0.801 0.9865 2,126 1.967 Ach4 2
Ach4_3 2707 1.968 1.488 1.395 Ach4 4
Ach5_1 0.795 1.036 2.307 2.155 Ach5 2
Ach5_3 2.879 2.062 1.549 1.491 Ach5_4
Bchl_1 2.006 1.843 2481 2372 Bchl 2
Behl_3 2.648 2.300 2.039 1.974 Bchl 4
Bch2 1 1.974 1.807 2.366 2.262 Bch2 2
Bch2 3 2456 2.136 1.974 1.898 Bch2 4
Bchd_1 1.263 1.319 1.341 1.561 Bch4 2
Bch4_3 2.563 2.143 2.047 2247 Bchd 4
Bch5_1 1.271 1.360 1.414 1.638 Bch5_ 2
Bch5_3 2.766 2.318 2.117 2220 Bch5 4
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Table 2

Pixel error statistics for variable rate VQ (PGTSVQ) channel 1 (1:32 compression). Percentage of scene within 1, 2, 5 and 10% abs. error

(abs. error is with respect to maximum value in the scene)
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Images < 1% Error < 2% Error < 5% Error < 10% Error
Training
Achl_1 46.44% 63.82% 92.73% 99.35%
Achl 3 67.16% 83.42% 97.23% 99.73%
Behl-1 54.06% 71.14% 93.42% 99.44%
Bch1-3 54.92% 72.21% 93.10% 99.00%
Test
Achl 2 57.78% 75.53% 94.66% 99.34%
Achl 4 54.46% 74.91% 95.75% 99.61%
Behl 2 53.17% 69.51% 90.09% 98.20%
Bchl 4 54.15% 73.61% 94.25% 99.11%
Chl. Error Histogram (% of max. value) Ch.1 Average Reflectance for 4x4 blocks
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Fig. 3. Error histogram of the PGTSVQ (32: 1 compression) on
ACHI1.3.

a tell tale sign which is especially prevalent in low
contrast regions which are under-represented in the
codebook, but nevertheless contribute very little to
the overall rmse. The variance of these sample
blocks was also calculated to provide insight into
the average reproducibility of high contrast areas.
These properties are very important for classifica-
tion algorithms which tend to be highly threshold
sensitive. A comparison between the variance of the
original and compressed channel 1 data (ACH1_3)
is shown in Fig. 6. There is generally a good agree-
ment as would be expected even though the vari-
ance for the compressed image is slightly less. This
occurs because the edges in the reconstruction are

Original [W/m?]

Fig. 4. Average reflectance over 4 x 4 samples of the PGTSVQ
(32:1 compression) on ACH1_3.

not as sharp due to the 4 x 4 blocks used for quant-
ization and because of the limit on the number of
codewords.

Scatter plots of the standard deviation versus
mean for the 4 x 4 blocks of the original and com-
pressed channel 1 images are shown in Figs. 7 and
8, respectively. The compressed image corresponds
to the variable-rate PGTSVQ with a 32:1 com-
pression. Similar plots are shown for a lower com-
pression ratio of 17:1 in Fig. 9. It is clear that the
low intensity samples for 32:1 compression are
only represented by a very few codewords, which is
solved by a higher rate (less compression, Fig. 9)
VQ. We also see that in Fig. 9, the high intensity
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Ch.1 Average Reflectance (32x32 sample blocks)
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Fig. 5. Average reflectance over 32x32 samples of the
PGTSVQ (32:1 compression) on ACH1_3.
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Fig. 6. Variance of reflectance over 32 x 32 samples of the com-
pressed ACH1_3 image using PGTSVQ (32:1 compression).
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samples are represented very well. The variable-
rate VQ (PGTSVQ) method tends to represent
high intensity regions better than the low intensity
regions. Fig. 10 shows the low intensity region of
the cumulative distribution function of channel
1 data (ACH1_3). The zoomed version of it is
shown in Fig. 11. A similar result as described in
the previous paragraph is observed here.

8.5. Comparison with JPEG standard

For compression of still pictures, the ISO has
recently adopted a standard known as JPEG (Joint

Ch. 1: Std. Deviation vs Mean for 4x4 blocks (Original)
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Fig. 7. Mean versus standard deviation of reflectance over 4 x 4
samples of the original ACH1_3 image.

Ch. 1: Std. Deviation vs Mean for 4x4 blocks (Compressed)
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Fig. 8. Mean versus standard deviation of reflectance over 4 x 4
samples of the compressed ACH1_3 using PGTSVQ (32:1 com-
pression).

Photographer Expert’s Group) which basically
combines DCT, scalar quantization, DPCM and
Huffman coding to achieve high compression at
good quality. The typical compression achievable
by the JPEG algorithm is around 20: 1. Generally,
the algorithm determines the compression ratio on
the basis of a desired quality factor. It is not pos-
sible to exactly match the compression ratio with
the VQ, for instance. In this work, we ran the JPEG
algorithm with a quality factor of 23 which
amounted to a compression of approximately 32: 1,
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Ch. 1: Std. Deviation vs Mean for 4x4 blocks (1:17 compression)
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Fig. 9. Mean versus standard deviation of reflectance over 4 x 4
samples of the compressed ACH1_3 using PGTSVQ (17: 1 com-
pression).
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Fig. 10. Cumulative pixel distribution, the original (solid)
and compressed (dashed) ACH1_3 using PGTSVQ (32:1
compression).

thereby establishing a base for comparison.
Fig. 12 shows the original and the compressed ver-
sions. As can be seen, the visual quality of JPEG
compressed image is comparable to the variable
rate PGTSVQ (Fig. 2) at 32: 1 compression. When
using the JPEG algorithm, the compression ratio is
calculated as the original image file size
(512 x 512 x 16 = 524 288 bytes; pixels in the orig-
inal image occupy two bytes) divided by the com-
pressed file size (16 449 bytes). This gives an average
bit rate of 0.25 bit/pixel for the JPEG scheme

Ch1. Cumulative Distribution for 4x4 Blocks
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Fig. 11. Zoom of cumulative pixel distribution, the original
(solid) and the compressed (dashed) ACHI1_3 using PGTSVQ
(32:1 compression).

Fig. 12. Picture of channel 1 satellite image compressed using
JPEG standard with a quality factor of 23 (approximately 32:1
compression): image size = 512x512 pixels @ 8 bits/pixel,
PSNR = 31.9 dB with 0.25 bit/pixel coding rate. (a) Original,
(b) compressed.
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(for the JPEG scheme, the original pixels have 8 bit
gray scale resolution!) with a PSNR of 31.9 dB.
Note that the average bit rates are different for
these two compression schemes — the VQ does not
depend on the actual pixel wordlength while the
JPEG does depend. Scatter plots were obtained for
the JPEG version and are shown in Figs. 13 and 14.
Fig. 13 shows the scatter plot of the average reflec-
tance for 4 x4 blocks of the original and JPEG
compressed version. Comparison of this figure with
Fig. 4 clearly reveals the poorer performance of
the JPEG standard — the plot is much wider — at
a compression of 32:1. In Fig. 14 is shown the
scatter plot of the variance over 4 x 4 blocks of the
original versus JPEG compressed versions. The
scatter plot of the variance shows the increase in the
mean square values (bulging of the plot) due to
JPEG compression. A closer look at Fig. 6 shows
that the PGTSVQ outperforms the JPEG standard
by a significant margin. Similar scatter plots for
block sizes of 32 x 32 are shown in Figs. 15 and 16,
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respectively. Again, comparison with the results for
the variable rate VQ shows that JPEG preserves
numerical accuracies comparable to the PGTSVQ
only on a macroscopic level but not on microscopic
levels. This may not be acceptable in developing
cloud model parameters. Another major factor not
in favor of the JPEG algorithm is the symmetrical
computational load, i.e., both compression and de-
compression parts require the same amount of
computations. This is clearly disadvantageous
especially in browsing applications.

8.6. Discussion

From the scatter plots we find that the variable-
rate VQ (PGTSVQ) does well at high intensity
regions (cloudy), but poorly at dark (clear sky)
regions in the visible channel. The opposite is true
for the other variable-rate VQ (PTSVQ). The rea-
son for this is that the latter type (PTSVQ) is

Ch.1 Average Reflectance for 4x4 Blocks
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Fig. 13. Average reflectance over 4 x 4 samples of the JPEG compressed image (approximately 32: 1 compression) on ACHI1_3.
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Fig. 14. Variance of reflectance over 4 x4 samples of the compressed ACH1_3 image using JPEG standard (approximately 32:1

compression).

initially a balanced tree and is pruned back to the
required rate and therefore has some characteristics
of the fixed-rate VQs which represents all regions in
the same manner. Therefore, the nodes of this VQ
(PTSVQ) split more evenly towards high intensity
areas (clouds) while nodes corresponding to darker
areas have empty cells. The overall effect is a poorer
quality of compression for the PTSVQ than the
PGTSVQ which, by definition, is an unbalanced
tree that grows according to the slope of the distor-
tion-rate curve. In the case of infrared images for
instance, the nodes corresponding to high pixel
intensities will have a small slope and, therefore,
may not grow before the nodes representing darker
pixels grow. Nevertheless, the PGTSVQ will still
perform poorly in the clear sky regions due to the
fact that the overall distortion does not increase in
the same order as in cloudy areas because of low
intensity values. Hence the tree does not develop
completely in the dark regions. Moreover, the
empty cell problem (an empty cell represents a node

with zero population) in the variable-rate VQ
(greedy TSVQ without pruning) can be avoided
entirely by adding a check to the algorithm and
terminating those branches that do not have
enough population to be split.

Even though the variable-rate VQ (PGTSVQ)
lacks in performance in the clear sky region, the
overall visual quality is better than that of other
variable-rate VQs, namely the pruned tree-struc-
tured VQ. This may be argued by noting that the
eye is sensitive to high contrasts. Since the contrast
1s very low in the clear sky regions, high distortion
in those areas is not readily perceived by the human
eyes. Whereas distortions in the cloud regions are
easily perceived due to high contrast. This explains
why the latter type VQ (PTSVQ) performs poorer
in terms of visual quality compared to the former
type (PGTSVQ). However, low numerical accuracy
in the clear sky areas can have severe consequences
in, for example, sea surface temperature calcu-
lations. The decompressed images can be made to
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Fig. 15. Average reflectance over 32 x 32 samples of the JPEG compressed image (approximately 32: 1 compression) on ACH1 3.

appear smoother and sharper using postprocessing
techniques. For example, the noise due to the lim-
ited codebook size (called the quantization noise)
can be somewhat smoothed either by dithering or
by using spatially varying filters [23]. Other post-
processing techniques such as adaptive contrast
enhancement and pseudocoloring can also be used
to improve the quality (visual and numerical accu-
racy) of the decompressed image.

Even though pixel by pixel comparisons are cru-
cial for scientific reproduceability, we must pay
careful attention to the comparison of the statistical
properties such as the mean and variance as well.
Scatter plots showing the mean and variance of
4 x 4 and 32 x 32 pixel blocks of the original versus
compressed images reveal general agreements be-
tween the two. This is an encouraging result, since
many studies depend upon average properties. The
poorer performance of the PGTSVQ in the clear
sky regions is again revealed by the scatter plot of
the intensity average. There it is seen from the

horizontal stripes that the PGTSVQ uses a few
codewords to represent clear sky regions as op-
posed to cloud regions. This is further exemplified
by the cumulative distribution function (cdf) plot.
The blown-up figure of the cdf plot, Fig. 11, shows
that the quantizer has denser representations above
the intensity level of approximately 8. As men-
tioned before, the low intensity values are used in
segmenting an image into cloudy and clear sky
regions, which may be altered by the limited num-
ber of low intensity codewords. This shortcoming is
overcome when lower compression ratios are used,
say 21:1. This clearly demonstrates the versatility
of the PGTSVQ and its ability to tradeoff compres-
sion versus quality without affecting other factors,
like the computational complexity.

High numerical reproducibility can be achieved
with compression ratios in the order of 8§:1to 16: 1
and even higher if the images are of deterministic
origin. Close interaction between scientists who use
the compressed images and those who develop
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compression).

compression algorithms is of crucial importance.
Since there are different cloud images with vari-
ations in structure and compositions, it may be
necessary to generate different codebooks for each
cloud category. During compression, one then has
to determine the type of each block or a region of
the image to access the proper codebook. This may
involve a higher computational cost and the deci-
sion to use such a scheme depends on the applica-
tion at hand.

9. Concluding remarks

In this paper, the applicability of variable-rate
vector quantization as a vehicle to compress data
sets like the AVHRR is investigated. Both fixed and
variable-rate VQs were designed for the visible and
infrared channels. In the case of the variable-rate
schemes, the trees were grown to a depth of 12
(average compression of 21:1) and then pruned

back to the required average rate. It is found that
even at a compression ratio of 32:1, the image
quality of a PGTSVQ is excellent, and that it per-
forms consistently better than the fixed-rate VQs
and the PTSVQ. The superior performance of the
PGTSVQ is exemplified in the scatter plots and the
error histograms. Moreover, a comparison of per-
formance with the JPEG standard algorithm shows
that JPEG compression is inferior to the PGTSVQ
at a compression of 32:1 (PSNR of 41.2 dB for the
PGTSVQ versus 31.9 dB for the JPEG) in preserv-
ing the numerical accuracy. It is important to note
that the VQ, in general, does not depend on the
word length of pixel intensities, such as 8 or 16
bits/pixel, whereas JPEG does depend on the word
length. This is an important factor to be reckoned
with since wordlength limitation, as in the JPEG
standard, severely degrades the numerical integrity.
Overall, the PGTSVQ seems to be a suitable image
compression method for data sets such as the
AVHRR.
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As with all algorithms, there exists a way to tailor
performance to meet user specific requirements. It
was shown that the greedy algorithm, while per-
forming well in high contrast areas, did not do so
well in representing areas that lacked variability,
such as the ocean. This may or may not be of
consequence depending on the type of study being
conducted. The cause for this degradation was the
lack of codewords developed to represent these
visually smooth areas. Many methods can be used
to overcome the deficiency.

The PGTSVQ makes its decision of which node
to split based on the trade off between decrease in
distortion for increase in rate. Large low-variance
regions, such as oceans, increase the overall rate
rapidly but do not contribute much to distortion
since they are typically dark. It therefore ignores
these regions in favor of high contrast areas which
contribute much more to distortion. To offset this,
one can either grow the codebook to higher rates
(decrease compression), or keep the same rate but
split the training time between the clusters contain-
ing the greatest population (lowest variance) and
the clusters containing the highest variance. An-
other method would be to weight the distortion
term in the slope equation with the inverse of the
range of intensities within the cluster. The above
modifications will yield a decrease in visual quality
or compression but may maintain a greater scient-
ific accuracy within the image.

More complicated schemes may also be con-
sidered that would classify the images into catego-
ries, say of oceans and clouds in the case of AVHRR
images, and develop a codebook for each category
[23]. This would increase the complexity of the
encoder/decoder and would double the number of
codebooks, but would yield a more even treatment
for both low contrast and high contrast areas while
maintaining the same compression ratio.

Further compression without sacrificing the
quality (visual and numerical) can be achieved us-
ing more advanced techniques such as the wavelet
transform [30] or fractal methods of which the
latter uses iteraterative function systems. These
techniques can also be combined with the
PGTSVQ to achieve high quality and very high
compression. These alternative techniques are
highly suited for browsing purposes because of

their very high compression ratios with good visual
reproducibility, but their numerical quality still
needs further research. An observation here is that
iterated function systems are claimed to achieve
very high compression [1]. However, it has not
been verified. It may therefore be of interest to try
out fractal methods to compress AVHRR image
data, especially for browsing purposes. The im-
plication is that scientists in different geographical
areas can browse through the images stored
in a central location using standard telephone lines
in real-time due to very high compression of the
images.

Since all the channels of an AVHRR image are
not independent, one should be able to exploit this
dependency to achieve much higher compression.
For example, some type of prediction can be em-
ployed to predict the infrared channel from the
short wave solar channel or vice versa, followed by
a variable rate VQ. The authors are working on
these extensions.
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