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the CIMS, air was sampled with an inlet specially
designed to separate gas- and particle-phase HNO3

by using a modified virtual impactor technique. Dur-
ing most flights, gas and particle phases were sam-
pled alternately for periods of ;3 min each. The
CIMS data confirm the NOy component of the large
particles as HNO3 on 20 January and provide size and
number concentration evidence consistent with the
NOy observations. With the MASP probe, the distri-
bution of particles was measured for sizes from 0.3 to
22 mm in diameter on 20 January. The probe data
confirm the presence of many small PSC particles
between 0.3 and 2 mm and a few larger particles up
to 20 mm in diameter. The probe data for the size and
number of the larger particles are nominally consis-
tent with the results in Fig. 4, although the statistical
uncertainty is high because of low count rates. The
number of particles in the size range of the small
simulation mode in Fig. 4 is also nominally consistent
with the probe data.

17. No direct measurements of particle shape are avail-
able. However, particles composed of solid HNO3

hydrates are generally assumed to be nonspherical,
even at sizes of ,5 mm, because of lidar depolariza-
tion measurements [e.g., (40)]. Although modest cor-
rections to fall speed and sampling efficiency calcu-
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adopted here throughout for simplicity.
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The Indian Ocean Experiment (INDOEX) was an international, multiplatform
field campaign to measure long-range transport of air pollution from South and
Southeast Asia toward the Indian Ocean during the dry monsoon season in
January to March 1999. Surprisingly high pollution levels were observed over
the entire northern Indian Ocean toward the Intertropical Convergence Zone
at about 6°S. We show that agricultural burning and especially biofuel use
enhance carbon monoxide concentrations. Fossil fuel combustion and biomass
burning cause a high aerosol loading. The growing pollution in this region gives
rise to extensive air quality degradation with local, regional, and global impli-
cations, including a reduction of the oxidizing power of the atmosphere.

Until recently, North America and Europe
dominated the use of fossil fuels, resulting in
strong carbon dioxide emissions and global
warming (1). The fossil energy–related CO2

release per capita in Asia is nearly an order of
magnitude smaller than in North America and
Europe (2). However, Asia is catching up.
About half of the world’s population lives in
South and East Asia, and hence the potential
for growing pollutant emissions is large. In
China, many pollution sources reduce air
quality (3–5). In rural residential areas, nota-
bly in India, the burning of biofuels, such as
wood, dung, and agricultural waste, is a ma-
jor source of pollutants (6 ). In urban areas,
the increasing energy demand for industry

and transport propels fossil fuel utilization
(7 ).

Here we evaluate measurements of the
Indian Ocean Experiment (INDOEX) to char-
acterize the atmospheric chemical composi-
tion of the outflow from South and Southeast
Asia, from January to March 1999 during the
dry winter monsoon (8). During this season,
the northeasterly winds are persistent, and
convection over the continental source re-
gions is suppressed by large-scale subsi-
dence, thus limiting upward dispersion of
pollution (9). Our analysis is based on mea-
surements from a C-130 and a Citation air-
craft operated from the Maldives near 5°N,
73°E, the research vessels Ronald H. Brown
and Sagar Kanya, and the Kaashidhoo Cli-
mate Observatory (KCO) on the Maldives
(Fig. 1). During the campaign, the location of
the Intertropical Convergence Zone (ITCZ)
varied between the equator and 12°S. Hence,
transport of primary pollutants and reaction
products toward the ITCZ could be studied
over an extended ocean area where pollutant
emissions are otherwise minor. By perform-
ing measurements across the ITCZ, the pol-
luted air masses could be contrasted against
comparatively clean air over the southern
Indian Ocean. Furthermore, we used the mea-
surements to evaluate the numerical represen-
tation of these processes in a chemistry gen-
eral circulation model (GCM) (10). The mod-
el was subsequently applied to calculate the
large-scale atmospheric chemical effects of
the measured pollution.

Aerosol chemical and optical measure-
ments were performed from both aircraft, the
R/V Brown, and KCO. The latter is located

1Max-Planck-Institute for Chemistry, Post Office Box
3060, D-55020 Mainz, Germany. 2Center for Atmo-
spheric Sciences, Scripps Institution of Oceanography,
La Jolla, CA 92093–4922, USA. 3National Center for
Atmospheric Research, Boulder, CO 80303, USA.
4School of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, GA 30332–0340,
USA. 5Department of Meteorology, University of
Maryland, College Park, MD 20742, USA. 6Utrecht
University, 3584 CC Utrecht, Netherlands. 7University
of Innsbruck, A-6020 Innsbruck, Austria. 8Climate
Monitoring and Diagnostics Laboratory, National
Oceanic and Atmospheric Administration, Boulder,
CO 80303, USA. 9Research Centre Jülich, ICG-2,
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on a small island about 500 km southwest of
India and more than 1000 km from the main
pollution centers. At KCO, we measured the
size distribution and chemical composition of
fine particles, collected on filters and cascade
impactors (11). The filter analysis shows an
average dry mass concentration of ;17 mg/
m3 (Fig. 2). The aerosol contained substantial
amounts of both inorganic and organic pol-
lutants, including black carbon (BC). Mass
spectrometric particle analysis shows that the
BC particles were always mixed with organ-
ics and sulfate, indicating substantial chemi-
cal processing. Very similar results were ob-
tained from KCO, the boundary layer flights
by the C-130 aircraft, and the R/V Brown,
which shows that the aerosol composition
was remarkably uniform over the northern
Indian Ocean.

The aerosol mass loading observed over
the Indian Ocean is quite comparable to sub-
urban air pollution in North America and
Europe (12). However, the BC content was
relatively high (Table 1), which gives the
aerosol a strong sunlight-absorbing character,
yielding a single scattering albedo at ambient
relative humidity between 0.8 and 0.9. This
aerosol, with a mean optical depth of 0.2 to

0.4 (at 0.63-mm wavelength), reduces solar
heating of the northern Indian Ocean by
about 15% (;25 W/m2) and enhances the
heating of the boundary layer by about 0.4
K/day (;12 W/m2), which substantially per-
turbs the regional hydrological cycle and cli-
mate (13, 14 ).

The BC aerosol and fly ash are unques-
tionably human produced because natural
sources are negligible. Likewise, non–sea-
salt sulfate can be largely attributed to anthro-
pogenic sources. Filter samples collected on
board the R/V Brown in the clean marine
boundary layer south of the ITCZ reveal a
fine aerosol sulfate concentration of about 0.5
mg/m3, probably from the oxidation of natu-
rally emitted dimethyl sulfide. The sulfate
concentration over the northern Indian Ocean
was close to 7 mg/m3, and we thus infer an
anthropogenic fraction of more than 90%.
Similarly, the ammonium concentration
south of the ITCZ, from natural ocean emis-
sions, was 0.05 mg/m3, indicating an anthro-
pogenic contribution of more than 95% to the
nearly 2 mg/m3 of ammonium observed north
of the ITCZ.

It is more difficult to attribute the organic
aerosol fraction to a particular source catego-

ry. Secondary organic particles from natural
hydrocarbon sources are probably of minor
importance because India is scarcely forest-
ed. Moreover, the BC/total carbon ratio of
0.5, as derived from the filter samples, is
typical for aerosols from fossil fuel combus-
tion (15). In the aerosol south of the ITCZ,
organic compounds were negligible, whereas
over the northern Indian Ocean, it was almost
6 mg/m3. We thus infer that most of the
particulate organics north of the ITCZ were
of anthropogenic origin. INDOEX aerosol
components of natural origin included a total
mass fraction of 1% sea salt and 10% mineral
dust. Nevertheless, some of the mineral aero-
sol likely originated from road dust and ag-
ricultural emissions. Taken together, the hu-
man-produced contribution to the aerosol was
at least 85%. Because precipitation is scarce
during the winter monsoon, the aerosol can
spread over the entire northern Indian Ocean
before entering the ITCZ, where it is largely
removed in deep convective clouds.

To evaluate gaseous pollution sources
with our model, we adopted the Emission
Database for Global Atmospheric Research
(EDGAR) (16 ). Table 2 indicates that the
South and East Asian region is a substantial
source of global pollution. For example, the
total carbon monoxide (CO) release is esti-
mated to be 50% larger than the combined
emissions from Europe and North America.
Table 2 also indicates that the nature of the
pollution is different from that in Europe and
North America. Particularly in India, the use
of biofuels and agricultural burning causes
substantial CO emissions.

Emissions from biomass burning are dif-
ficult to estimate because they usually occur
scattered over large rural areas. Moreover,
the burning process is not well defined be-
cause the fuel type and the combustion phase
(flaming, smoldering) strongly affect the
smoke composition (17 ). Many people in the
Indian region still live in rural areas where

Table 1. Mean fine and coarse mass fractions of
aerosols collected on filters on board the C-130
aircraft in the boundary layer (34 samples) and at
KCO (24 samples). D is diameter. MSA is methane
sulfonic acid. “Rest” includes magnesium, calcium,
oxalate, formate, and unidentified material.

Compound
D , 1 mm

(%)
D . 1 mm

(%)

Sulfate 32 25
Organics 26 19
Black carbon 14 10
Mineral dust 10 11
Ammonium 8 11
Fly ash 5 6
Potassium 2 1
Nitrate ,1 4
Sea salt, MSA ,1 12
Rest 2 1
Total mass (mg/m3) 22 17

Fig. 1. Schematic over-
view of the INDOEX
measurement domain,
traversed by two ships
(red hatching) and two
aircraft (43 flights; yel-
low hatching), the
mean location of the
ITCZ, and 1- to 2-week
boundary layer air
mass trajectories dur-
ing January to March
1999 (arrows). KCO is
the Kaashidhoo Cli-
mate Observatory at
5°N, 73.5°E.

Fig. 2. Average mass (M) compo-
sition of fine aerosol on KCO
(Maldives) as a function of the
logarithm of the particle diame-
ter (D) in February 1999. The
residual includes mineral dust,
fly ash, and unknown com-
pounds (11).
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domestic energy consumption largely de-
pends on biofuels, whereas in urban areas,
soft coke, kerosene, and other liquid fuels are
also used. In Asia, about one-quarter of the
energy use depends on biofuels, whereas in
India, this fraction is larger, close to 50% (18,
19). It has been estimated that in India, fire-
wood contributes about two-thirds to biofuel
consumption, whereas the burning of dung
and agricultural wastes contribute roughly
equally to the remaining one-third (20–22).

A particularly useful indicator of biomass
burning is the relative abundance of methyl
cyanide (CH3CN) to that of CO (23). The
biomass burning emission of both gases
mostly takes place from smoldering. The
DCH3CN/DCO ratio measured on the C-130
aircraft and the R/V Brown was about 0.2%
(Fig. 3) (24 ). This is close to the values
obtained from controlled biomass fires in the
laboratory (23). Without other substantial
sources of CH3CN, it follows that biomass
burning was a major source of CO over the
northern Indian Ocean. Measurements in air
masses transported from southwestern Asia,
mostly west of India (in blue), show a much
lower DCH3CN/DCO ratio (Fig. 3), illustrat-
ing the importance of fossil fuel combustion
as a pollution source to these air masses in
addition to biomass burning (25). From our
model simulations, which are in good agree-
ment with the measurements, we infer that 60
to 90% of the CO originated from biomass
burning (Fig. 4).

This model estimate is supported by a
comparison of radiocarbon monoxide (14CO)
in low-latitude clean Southern Hemispheric
air with that over the northern Indian Ocean,
as measured from samples taken from the
R/V Brown. The clean air samples south of
the ITCZ contained on average 55 parts per
billion by volume (ppbv) of CO and 6.2
molecules of 14CO/cm3 whereas north of the
ITCZ, this was 155 ppbv and 9.7 molecules/
cm3 (26 ). The 14CO difference between these
air masses must be of biogenic origin, i.e.,
mainly biomass burning, because fossil fuels
are radiocarbon-depleted. Previous analysis
has shown that biomass burning adds 0.038
molecules of 14CO/cm3 per ppbv of CO (26 ).
If we assume further that about a third of the
55 ppbv of background CO is also related to
biomass burning, as calculated with our mod-
el (Fig. 4B), it follows that the average con-
tribution of biomass burning to CO over the
northern Indian Ocean was 70 to 75%.

The highest pollution levels originated
from the area around the Bay of Bengal
(Table 3). The impact of these air masses
over the Indian Ocean was largest in Febru-
ary. In March, the region was more strongly
influenced by air that originated north of the
Arabian Sea (Fig. 1). Although this air was
generally cleaner, it also carried desert dust,
which contributed to the aerosol load. The

aircraft measurements also show substantial-
ly enhanced methyl cyanide and methyl chlo-
ride (CH3Cl) concentrations, particularly in
air from the Bay of Bengal region. The latter
points to the extensive use of chlorine-rich
fuels such as agricultural waste and dung
(27 ). Levels of NO only rarely exceeded the
instrument detection limit of 40 parts per

trillion by volume (pptv) (only in fresh pol-
lution plumes and downwind of ITCZ light-
ning), hence these are not shown.

We observed strongly enhanced CO levels
over the northern Indian Ocean (28). Average
CO mixing ratios at KCO in February were
close to 200 ppbv. Such high CO concentra-
tions are comparable to polluted air down-

Table 2. Global anthropogenic CO2, CO, NOx, SO2, and NMHC emissions (India region includes
Bangladesh, Maldives, Sri Lanka, Myanmar, Nepal, and Pakistan. China region includes Cambodia,
Vietnam, Laos, Mongolia, and North Korea. East Asia includes Japan, South Korea, Indonesia, Malaysia,
Philippines, and Thailand) (16).

Source category Global
North

America
Europe India China

East
Asia

Carbon dioxide (Pg of CO2 per year)
Total 29.8 6.2 (21%) 4.9 (16%) 2.2 (7%) 4.0 (13%) 2.5 (8%)
Fossil fuel use 21.9 5.6 4.5 0.7 2.6 1.7
Industrial processes 0.6 0.1 0.2 – 0.1 0.1
Biofuel use 5.5 0.5 0.2 1.4 1.2 0.5
Agriculture 1.8 – – 0.1 0.1 0.2

Carbon monoxide (Tg of CO per year)
Total 975 107 (11%) 85 (9%) 110 (11%) 111 (11%) 69 (7%)
Fossil fuel use 263 74 53 4 34 16
Industrial processes 35 2 8 1 5 6
Biofuel use 181 9 2 47 40 19
Agriculture 496 22 22 58 32 28

Nitrogen oxides (Tg of NO2 per year)
Total 102 26 (25%) 16 (16%) 6 (6%) 11 (10%) 6 (6%)
Fossil fuel use 72 24.3 13.6 2.6 7.2 4.3
Industrial processes 5 0.4 1.1 0.2 0.9 0.7
Biofuel use 5 0.5 0.2 1.1 1.5 0.4
Agriculture 20 0.8 0.7 2.0 1.1 1.0

Sulfur dioxide (Tg of SO2 per year)
Total 148 24.5 (17%) 33.3 (23%) 5 (3%) 28 (19%) 7 (5%)
Fossil fuel use 120 22.8 26.4 4.0 25.0 5.0
Industrial processes 23 1.2 6.4 0.3 2.8 1.7
Biofuel use 2 0.4 0.4 0.2 0.3 0.1
Agriculture 4 0.1 0.1 0.4 0.2 0.2

Nonmethane hydrocarbons (Tg of NMHC per year)
Total 178 22 (12%) 21 (12%) 19 (11%) 17 (10%) 16 (9%)
Fossil fuel use 69 12 12 1.5 3 6
Industrial processes 34 7 7 3 4 4
Biofuel use 31 1 0.2 8.5 6 3
Agriculture 44 2 2 6 4 3

Fig. 3. (A) Methyl cya-
nide (CH3CN) versus
carbon monoxide (CO)
mixing ratios measured
from the R/V Brown
and calculated with a
chemistry GCM. Aver-
age values are shown
by the straight lines.
The measurements
(black) were performed
between 12°S, 73°E
and 17°N, 69°E. The
measurements in blue
represent air masses
transported from the
northwest, as deter-
mined by back-trajec-
tory calculations (25).
Because our chemistry
GCM is unable to dis-
tinguish the air mass history, because it mixes the air masses at 1.8° resolution, the slope of the red line
is less steep than of the black line.
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wind of North America and Europe. The
KCO measurements show that aerosol ab-
sorption and scattering were highly correlated
with CO, which indicates that the trace spe-
cies of various origins were well mixed in the
marine boundary layer (BL). Especially in
February and early March, pollution levels at
KCO varied strongly on a 3- to 7-day time
scale. CO typically ranged from 120 to 250
ppbv. These changes were associated with
tropical cyclones that transported cleaner air
from the south (9). Later in March, the pol-
lution levels near the surface were lower,
largely associated with the air mass trajectory
change from the northeast to the northwest.
The aerosol optical thickness, however, was
higher than in February. This indicates that
particularly in March, substantial pollution
transport took place above the BL.

Pollution variations over the northern In-
dian Ocean are also influenced by tropical
waves that alter the intensity of ITCZ con-
vection, acting on a 1- to 2-month time scale
[known as the Madden Julian Oscillation
(MJO)]. Strong convection ventilates the BL
and increases the monsoonal flow (9). Fur-
thermore, variations on an interannual time
scale are affected by the El Niño–Southern
Oscillation. During the recent El Niño in
February 1998, for example, pollution trans-
port from India was reduced, so that CO
concentrations at KCO were only 110 to 140
ppbv. In February 1999, on the other hand,
the monsoonal flow was strong, and hence
pollution transport was efficient. In March
1999, the ITCZ convection intensified during
an active phase of the MJO, which ventilated
BL pollution from the Indian Ocean.

Considering that the pollution occurs at
low latitudes, one expects strong photochem-
ical activity, possibly giving rise to ozone
(O3) buildup. Because of its important role in
atmospheric chemistry, O3 was measured

from all platforms and ground stations, as
well as through balloon soundings from KCO
and the R/V Brown (29). In several O3 pro-
files over KCO (Fig. 5A), sharp peaks can be
discerned, with a particularly pronounced O3

maximum above the BL. The O3 minimum
within the BL, which extended to an altitude
of 0.5 to 1 km, and the maximum directly
above are not well reproduced by the model.
This is related to a sea breeze circulation at
the Indian coast that is not resolved. During
daytime, the convective BL over land extends
to about 2 to 3 km, whereas further down-
wind, the marine BL only reaches about 1-km
altitude or less (30, 31). The sea breeze caus-
es upward transport over land that adds pol-
lution to a stable layer that develops over the
Indian Ocean between about 1 and 3 km in
the monsoonal outflow from India. Because
cumulus convection is weak in the Indian
outflow, the layer can remain intact, which
constitutes a “residual” pollution layer.

Typical altitude profiles of pollutants
downwind of India, measured from the C-130
aircraft, also show the residual layer (Fig.
5B). In general, this layer was more pro-
nounced in March than in February, related to

the growing convection over land as surface
heating increases toward the end of winter.
Some of the profiles also show a secondary
maximum between 3- and 4-km altitude. Me-
teorological analysis indicates that these air
masses were transported from the east, carry-
ing pollution from Southeast Asia. On several
occasions, it was observed that the vertical
layering, shown in Fig. 5, can be maintained
as far south as the Maldives, whereas further
toward the ITCZ, trade wind cumulus con-
vection causes breakup, vertical mixing, and
partial dispersion into the free troposphere.

Although O3 concentrations near the In-
dian coast were about 50 ppbv and peak
values in the residual layer even reached 80
to 100 ppbv, photochemical destruction of O3

prevents its accumulation over the Indian
Ocean. Typically, O3 decreased from ;50
ppbv at 15°N to ;10 ppbv near the ITCZ,
which implies an O3 loss rate in the BL of 1.5
to 2 ppbv per degree of latitude, or about
10%/day. Much pollution originates from
biomass burning. In particular, smoldering
fires produce relatively little NOx, a neces-
sary ingredient for photochemical O3 forma-
tion (NOx 5 NO 1 NO2). Nevertheless,

Table 3. Mean results from boundary layer Cita-
tion aircraft measurements (25 flights) between
the Maldives and the ITCZ during February to
March 1999. The two main source regions of the
measured air pollution have been determined by
back-trajectory calculations (25) (standard devia-
tions in parentheses).

Source region

Bay of
Bengal

Arabian
Sea

CO (ppbv) 208 (42) 135 (16)
O3 (ppbv) 15 (5) 13 (4)
CH3C(O)CH3

(ppbv)
2.2 (0.4) 1.6 (0.2)

CH3CN (pptv) 288 (72) 266 (39)
C2H6 (pptv) 817 (251) 465 (134)
C2H2 (pptv) 291 (179) 81 (34)
C3H8 (pptv) 50 (36) 36 (41)
C6H6 (pptv) 99 (42) 40 (18)
CH3Cl (pptv) 757 (64) 650 (30)

Fig. 4. (A) Mean CO (ppbv) near the surface over the Indian Ocean during February 1999, as
calculated with our chemistry GCM (10). Average winds are shown by streamlines. Marked tracers
indicate the percentage of CO from (B) biomass burning (BB)—mostly biofuel use and agricultural
waste burning—and (C) fossil fuel (FF) combustion. The remainder largely originates from
hydrocarbon oxidation.
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several hundred pptv equivalent nitrate was
measured in the coarse aerosols, which indi-
cates that NOx emissions are not negligible.
However, NOx is converted into nitrate by
nighttime heterogeneous reactions on aero-
sols and daytime reaction with hydroxyl
(OH) radicals, followed by uptake of HNO3

by sea salt and dust particles. As a result, the
NOx lifetime is half a day or less, and its
mixing ratio was generally quite low in the
marine BL (NO , 10 pptv) (32), favoring
chemical O3 destruction rather than O3 for-
mation (33–36 ).

The combined anthropogenic NOx source
(SN) from South and Southeast Asia is pro-
portionally much smaller than the total CO
and hydrocarbon source (SC) as compared
with Europe and North America. Thus, the
ratio SN/SC (mol/mol) is comparatively low
in Asia. The North American and European
emissions, largely associated with high-tem-
perature fossil fuel combustion, contain much
more NOx. This implies not only that O3

photochemistry in the south-southeast Asian
plume is strongly NOx limited but also that
OH regeneration by NO is inefficient (37,
38). On a global scale, OH regeneration by
NOx is about equally as important as the
primary OH production by O3 photodissocia-
tion (38). From our chemistry GCM, using
the EDGAR emission database, we infer that
the SN/SC ratio is more than four times lower
in South and East Asia than in North America

and Europe. Our model calculations indeed
indicate that human-produced emissions from
South and East Asia reduce OH concentra-
tions, whereas European and North American
pollution has the opposite effect. Because OH
is the foremost oxidant that removes natural
and human-produced gases, the Asian pollu-
tion reduces the oxidizing power of the atmo-
sphere. For example, it increases the lifetime
of methane (CH4), an important greenhouse
gas.

Our results show that during the winter
monsoon, South and Southeast Asian emis-
sions cause considerable air quality degra-
dation over an area in excess of 10 million
km2. The nature of the pollution deviates
from that in Europe and North America, a
consequence of widespread biofuel use and
agricultural burning, in support of the emis-
sion estimates in Table 2. In the next de-
cades, emission trends in the region will
likely reflect the additional use of fossil
fuels, more strongly associated with NOx

emissions, boosting photochemical O3 for-
mation and the production of BC and sul-
fate, comparable to Europe and North
America during the 1970s (39). However,
considering the population size, the situa-
tion in Asia may become more serious. In
southern Asia, the pollution buildup will be
strongest in the winter monsoon under
large-scale subsidence and cloud-free con-
ditions. Unless international control mea-

sures are taken, air pollution in the North-
ern Hemisphere will continue to grow into
a global plume across the developed and
the developing world.
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Recolonizing Carnivores and
Naı̈ve Prey: Conservation
Lessons from Pleistocene

Extinctions
Joel Berger,1* Jon E. Swenson,2 Inga-Lill Persson3†

The current extinction of many of Earth’s large terrestrial carnivores has left
some extant prey species lacking knowledge about contemporary predators, a
situation roughly parallel to that 10,000 to 50,000 years ago, when naı̈ve
animals first encountered colonizing human hunters. Along present-day car-
nivore recolonization fronts, brown (also called grizzly) bears killed predator-
naı̈ve adult moose at disproportionately high rates in Scandinavia, and moose
mothers who lost juveniles to recolonizing wolves in North America’s Yellow-
stone region developed hypersensitivity to wolf howls. Although prey that had
been unfamiliar with dangerous predators for as few as 50 to 130 years were
highly vulnerable to initial encounters, behavioral adjustments to reduce pre-
dation transpired within a single generation. The fact that at least one prey
species quickly learns to be wary of restored carnivores should negate fears
about localized prey extinction.

The spectacular post-Pleistocene extinctions
of many genera of large animals in areas
ranging from Australia to North America
have been attributed primarily to human
overkill as hunters encountered naı̈ve prey—
the “blitzkrieg hypothesis” (1)—and/or to cli-
mate change (2). An inadvertent consequence
of today’s extinction of many large carni-
vores is that prey in otherwise intact areas
may lose knowledge about current predators
(3, 4 ). These extinctions, however, offer op-

portunities to assess the generality of compo-
nents of the blitzkrieg hypothesis and to ad-
dress concerns about the ecological conse-
quences of carnivore restoration. In Western
Europe and the United States (outside of
Alaska), wolves (Canis lupus) and brown
bears (Ursus arctos) were eliminated within
100 years from more than 95% of their range.
The cessation of predation has released mam-
malian prey from past selection pressures
(3–5), but the current expansion of large car-
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