Multi-Campus UC Course for Bending the Curve

Upper-Division Undergraduate Level Course for Majors in Engineering, Humanities, Math/Science, & Social Science

Bending the Curve: Climate Change Solutions

Launch During Winter and Spring of 2018 at UCI, UCR, UCSC, UCSD, UCD, UCSB

Chair: V. Ramanathan, University of California, San Diego **Co-Chair:** H. Han, University of California, Santa Barbara

December 12, 2018

Produced by Alan Roper Innovative Learning Technology Initiative University of California

The Vision

"Bending the Curve: Climate Change Solutions" will focus on scalable solutions for carbon neutrality and climate stability. The course adopts climate change mitigation policies, technologies, governance and actions that California, the UC system, and cities around the world have adopted as living laboratories and challengesstudents to identify locally and globally scalable solutions. It also adopts the Ten Scalable Solutions as determined by fifty faculty from the 10-campus UC system under UC's Carbon Neutrality Initiative.

It will be launched in UC campuses beginning January 2018. In subsequent phases, the course will be offered to students across the state, the nation and the globe.

Climate change solutions provide tools to students, so they can bend the curve & preserve nature for future generations.

https:// uccarbonneutralitysummit2015.ucsd.edu/_files/Bending-the-Curve.pdf

I. Course Organization

instructor can substitute the remaining lectures with topics of their own choice or use the class room time as lab sessions and guide students in their solutions Climate Solutions is designed as a hybrid course. It projects. Core readings are 10 chapters from Bending combines the best elements of a traditional in-person the Curve: Ten scalable solutions for carbon neutrality class with that of online learning environments and and climate stability. flipped classrooms. It requires an in-person instructor.

The course was originally offered as graduate level course at UCSD by V. Ramanathan during spring of 2016. About 16 lecturers from all ten UC campuses gave lectures in person at UCSD or remotely. Students were graded 1/3 for in class participations and 2/3 for a group project devoted to solutions on local to global scales. The student groups chose living laboratories of climate mitigation programs from around the world and analyzed them. The favorable response from the students provided the impetus to design this hybrid undergraduate level course beginning summer of 2016 in collaboration with the Innovative Learning Technology Initiative of the UC system. In order to test the appropriateness of the lecture materials for undergraduate students from all majors including humanities, Ramanathan in partnership with Professor Fonna Forman (UCSD-political science) adapted and piloted the course for undergraduates at UCSD during within a lecture) spring of 2017. The course was cross-listed between the Scripps Institution of Oceanography and the Department of Political Science, and attracted students from a dozen majors and minors across the UC San Diego campus.

Online Aspect: We have identified faculty from across the University of California system that are top experts in their field and worked with them to tape 20 lectures of about 1 hour each. The lectures cover the multidimensional aspect of the problem ranging from climate science, social science, societal transformation, technology, ecosystem management, governance, economics and market incentives (Table in Section IV). These lectures give students the opportunity to learn from some of the leading experts on climate change solutions. The course is currently designed for a 10 week quarter. The lectures are organized using the following hierarchy of terms: *Clusters:* (the organizing principles for the solutions) *Lectures:* (describing a unit of study) Modules: (describing instructional delivery of content *Lessons:* (describing sections within a module) Flipped Class Room: The students are expected to have gone through each videotaped lecture before the

class and come prepared to discuss the lectures in the classroom, with an in-person instructor. The students natural science, engineering and social science.

Student Grading: Students will be grouped into will be grouped into teams of about 5 each and, in an interdisciplinary teams with 4-5 members maximum in ideal setting, each team will have students majoring in each team. This course will require students to review lecture material and complete readings at home prior to class. Class time will focus on in-class discussions **In-person**: The instructor will have flexibility of the concept and the questions in the lecture notes in adapting and conducting the class; it can be a as well as group project work. Interdisciplinary discussion of the video lecture, or a discussion of the discussions will take place both online and in-person, questions given in the video lecture, or the instructor with groups encompassing students from at least 3 can choose to give his/her own perspectives on the different disciplines. Students can be graded using one subject matter. We require that at least 12 of the lectures of several options including the following two: from the video library be included in the course. The

Standard procedure of quizzes, mid-terms and finals. To facilitate such a grading practice, each lecture has instructor guides with questions and class room discussion topics and issues.

Flipped Class room with group projects: Students will be graded based on 30% for in-class discussions, 50% for group project, and 20% for individual project Report. We attach Appendix-1 as a separate document which provides the syllabus, the guidelines for class projects and grading procedure for the version of

the course that will be launched in Jan of 2018 at the University of California at San Diego.

We acknowledge financial support from UC office of the president (50%) and the UCSD education program (50%). Astrid Hsu played a critical role in designing the format for the video presentations, ensuring the time schedule was followed by all participants and in participating in the review of all the lectures for quality and consistency.

II. Organizing Structure for the Taped Lectures

The course lectures follow the topics in the Bending the Curve report. That report arrived at Ten Solutions for carbon neutrality and climate stability. The Ten Solutions are organized under Six Clusters as follows:

Clustere	Colutions	
Clusters	Solutions	
	1. Bend the warming curve immediately by reducing short-lived climate	
Science Solutions	pollutants (SLCPs) and sustainably by replacing current fossil-fueled	
	energy systems with carbon neutral technologies.	
Societal	2. Foster a global culture of climate action through coordinated public	
Transformation	communication and education at local to global scales.	
Solutions	3. Deepen the global culture of climate collaboration.	
Governance	4. Scale up subnational models of governance and collaboration around	
Solutions	the world to embolden and energize national and international action.	
	5. Adopt market-based instruments to create efficient incentives for	
Market- and	businesses and individuals to reduce CO2 emissions.	
Regulations-Based	6. Narrowly target direct regulatory measures — such as rebates and	
Solutions	efficiency and renewable energy portfolio standards — at high	
	emissions sectors not covered by market-based policies.	
	7. Promote immediate widespread use of mature technologies such as	
	photovoltaics, wind turbines, battery and hydrogen fuel cell electric	
	light-duty vehicles and more efficient end-use devices, especially in	
	lighting, air conditioning, appliances and industrial processes.	
Technology-Based	8. Aggressively support and promote innovations to accelerate the	
Solutions	complete electrification of energy and transportation systems and	
	improve building efficiency.	
	9. Immediately make maximum use of available technologies combined	
	with regulations to reduce methane emissions by 50 percent and black	
	carbon emissions by 90 percent.	
	10. Regenerate damaged natural ecosystems and restore soil organic	
Natural and	carbon to improve natural sinks for carbon (through afforestation,	
Managed	reducing deforestation and restoration of soil organic carbon).	
Ecosystem	Implement food waste reduction programs and energy recovery	
Solutions	systems to maximize utilization of food produced and recover energy	
	from food that is not consumed.	

III. Learning Objectives

Course level learning objectives describe what students will be able to do at the end of the course.

Category	Course Objective
By the end of	the course the student will be able to:
Climate	1. Explain basic concepts of climate change science.
change	2. Explain some of the social, scientific and political antecedents that
drivers and	have led to the crisis driving the current need for climate stability.
impact	3. Compare the impact that climate change has on the world from
	various perspectives, including (but not limited to)
	scientific/technological, socio-economic, governance/regulatory.
Climate	4. Identify various solutions for carbon neutrality and climate
change	stability, and their interrelationships.
mitigation	5. Associate climate change mitigation strategies with the casualties
and solutions	that they can trigger, and consider nuanced variations on strategies
	that lessen the impact on victims.
	6. Organize climate mitigation under the six clusters and apply the
	ten pragmatic, scalable solutions from the Bending the Curve report
	in ways that address human dimensions of the problem.
Call to action	7. Identify some of the roles that individuals and groups can play in
	addressing climate change in one's community.
	8. Identify opportunities for action within one's community
	9. Articulate a statement of personal and societal responsibility for
	environmental equity, ethics, and justice which can guide decisions
	and behaviors.

Lecturer	Campus	Expertise	
Max Auffhammer	UC Berekley	Economics	
Jacob Brouwer	UC Irvine	Energy Technology	
Jon Christensen	UC Los Angeles	Environmental journalism	
Steven Davis	UC Irvine	Lowcarbon Energy Sources	
Fonna Forman	UC San Diego	Political theory, global justice and equitable urban transformation.	
Hahrie Han	UC Santa Barbara	Environmental politics, civic and political engagement	
Mark Jacobsen	UC San Diego	Economics and environmental regulation; transportation economics	
Jack Miles	UC Irvine	Religion, science and the environment;	
Per Peterson	UC Berekley	nuclear technology & waste processing	
David Pellow	UC Berekley	Environmental Justice; race and ethnic studies, so	
Keith Pezzoli	UC San Diego	Planning, interactions in city-region sustainability.	
Daniel Press	UC Santa Cruz	Environmental politics and policy	
Veerabhadran Ramanathan	UC San Diego	Climate and atmospheric sciences.	
Eric Rignot	UC Irvine	Glaciology & climate change	
Scott Samuelsen	UC Irvine	Power generation, distribution, and utilization;	
Whendee Silver	UC San Diego	Ecosystem ecology, biogeochemistry	
Gina Solomon	UC San Francisco	Health and asthma effects of climate change	
Richard Somerville	UC San Diego	Climate communications; atmospheric modeling;	
Daniel Sperling	UC San Diego	Transportation technology & Policy	
Matthew St. Clair	UC Office of the	Sustainability; strategic energy	
	President	innovations	
David Victor	UC San Diego	Climate Policies and Politics	
Durwood Zaelke	UC Santa Barbara (Adjunct)	Environmental law and policy;	

Summary of Taped Lectures V.

Lecture	Cluster	Topics	Course Objective Addressed
		PART I: SETTING THE STAGE: CLIMATE CHANGE DRIVERS & IMPACT	
1	Science Solutions	Climate Change <i>V. Ramanathan (UCSD)</i>	1
2	All Clusters	Six Clusters & Ten Solutions for Bending the Curve <i>V. Ramanathan (UCSD)</i>	4, 6
3	Societal Transformat ion Solutions	 Humans & Nature: How Did We Get Here? I. Climate Justice & Equitable Approaches <i>F. Forman (UCSD)</i> II. The Quest for Climate Justice <i>D. Pellow (UCSB)</i> 	2, 3
4	Science Solutions	 Impacts and Barriers to Solutions (Choose 2 of 3) I. Obstacles to Climate Solutions S. Davis (UCI) II. Climate Change: Health Impacts G. Solomon (UCSF) III. Sea Level Rise From Melting Ice E. Rignot (UCI) 	3, 5
		PART II: LIVING LABORATORIES FOR BENDING THE CURVE: THE CALL TO ACTION	
5	Governance Solutions	Bending the Curve: Lessons from California D. Press (UCSC)	4, 6
6	All Clusters	 Bending the Curve: Lessons from UC I. Carbon Neutrality Initiative of UC <i>M. St. Clair (UCOP)</i> II. Energy Efficiency Management at UCI <i>J. Brower (UCI)</i> 	4
		PART III: SOLUTIONS: CLIMATE MITIGATION & SOLUTIONS	
7	Science & Technology- Based Solutions	Science & Technology Pathways for Bending the Curve I. Energy Technology Pathways <i>S. Samuelsen (UCI)</i> II. Transportation Pathways for BtC <i>D. Sperling (UCD)</i>	1, 4

Summary of Taped Lectures (cont'd)

8	Societal Transformati on Solutions	Your Leadership: Social Movements & Social Solutions to Climate Change <i>H. Han (UCSB)</i>	7, 8
9	Societal Transformati on Solutions	 Behavioral Changes I. Changing Social Norms & Behavior <i>F. Forman (UCSD)</i> II. Role of Religon in BtC <i>J. Miles (UCI)</i> 	7, 8
10	All Clusters	Local Solutions: Making Urban & Rural Areas Resilient (Living Laboratory: UCSD) <i>K. Pezzoli (UCSD)</i>	6, 7
11	Societal Transformati on Solutions	 Public Opinion & Communication I. Climate Science Communications <i>R. Somerville (UCSD)</i> II. Climate Communication <i>J. Christensen (UCLA)</i> 	8, 9
12	Governance Solutions	International Governance <i>D. Victor (UCSD</i>)	9
13	Market- & Regulations- Based Solutions	Consideration of Economics for Designing Climate Policy <i>M. Auffhammer (UCB)</i>	3, 5
14	Market- & Regulations- Based Solutions	Cost Effective & Efficient Climate Policies <i>M. Jacobsen (UCSD)</i>	3, 4, 5
15	Technology- Based Solutions	Bending the Curve with Sustainable Transportation <i>M. Barth (UCR)</i>	3, 5
16	Technology- Based Solutions	New Technologies & Innovations For Carbon Neutrality I. Renewable Energy <i>S. Samuelsen (UCI)</i> II. Nuclear Energy <i>P. Peterson (UCB)</i>	5,7
17	Technology- Based Solutions	Technologies for SLCPs Mitigation V. Ramanathan (UCSD) & D. Zaelke (UCSB)	4, 5
18	Natural & Managed Ecosystem Solutions	Bending the Carbon Curve by Enhancing Carbon Sinks <i>W. Silver (UCB)</i>	1

VI. Detailed Outline of Taped Lectures

Course Overview & Vision

PART I: SETTING THE STAGE: CLIMATE CHANGE DR

Lecture 1: Climate Change Module 1: Anthropocene & Planetary Stewardship Module 2: Greenhouse Effect & Global Warming Module 3: Why & How is Climate Changing Module 4: Impacts Module 5: Projected Warming & Summary

Lecture 2: Six Clusters & Ten Solutions Module 1: Setting the Stage for Mitigation Module 2: Six Clusters as the Organizational Princip Module 3: The Ten Solutions Module 4: Living Laboratories

Lecture 3: Humans & Nature: How Did We Get Here? *Climate Justice & Equitable Approaches* Module 1: Man + Nature Module 2: Climate Justice Module 3: Disproportionate Impacts

The Quest for Climate Justice Module 1: Defining Climate Injustice & Climate Just Module 2: Cases of Climate Injustice Module 3: Global Climate Policy Frameworks Module 4: What Might Climate Justice Look Like?

Lecture 4: Impacts & Barriers to Solutions *Climate Change: Health Impacts* Module 1: Air: Hot & Dirty Module 2: Water: Dry or Drown Module 3: Disease: The Coming Plagues?

Sea Level Rise From Melting Ice Module 1: How Melting Happens Module 2: History of Melting Module 3: What We Can Do

Bending the Curve: Climate Change Solutions

	V. Ramanathan (UCSD)		
RIVERS & IMPACT			
	V. Ramanathan (UCSD)		
	V Ramanathan (UCSD)		
ole	v. Rumunum (0002)		
	F. Forman (UCSD)		
tice	D. Pellow (UCSB)		
lice			

G. Solomon (UCSF)

E. Rignot (UCI)

10

VI. Detailed Outline of Taped Lectures (cont'd)

Obstacles to Climate Solutions Module 1: Technological & Economic Challenges Module 2: Political & Behavioral Challenges	S. Davis (UCI)
PART II: LIVING LABORATORIES FOR BENDING THE CURVE: THE CAI	L TO ACTION
Lecture 5: Bending the Curve: Lessons from California Module 1: 50 Years of California Policies: Air Quality Module 2: 50 Years of California Policies: Energy Module 3: California: Big State & Small Energy Demand Module 4: California's Climate Change Policies: AB 32 2006 Module 5: AB 32 Policies and Implementation Module 6: Beyond AB 32	D. Press (UCSC)
Lecture 6: Bending the Curve: Lessons from UC <i>Carbon Neutrality Initiative of UC</i> Module 1: What Role Can Universities Play? Module 2: UC's Carbon Footprint and Climate Solutions Module 3: UC's Education Footprint	M. St. Clair (UCOP)
Energy Efficiency Management Module 1: Energy Efficiency: Overview Module 2: Energy Efficiency: Campus Operations Module 3: Energy Efficiency: Generation of Power Module 4: Energy Efficiency: Utilization of Power	J. Brouwer (UCI)
PART III: SOLUTIONS: CLIMATE MITIGATION & SOLUTIONS	
Science Solutions Cluster (Solution #1)	
Lecture 7: Science & Technology Pathways <i>Energy Technology Pathways</i> Module 1: Energy Demand and GHG Intensity through 2015 Module 2: Role of Combustion Module 3: Paradigm Shifts in Electricity & Transportation	S. Samuelsen (UCI)
<i>Transportation Pathways for BtC</i> Module 1: Vehicles Module 2: Fuels Module 3: Mobility	D. Sperling (UCD)

11

Bending the Curve: Climate Change Solutions

VI. Detailed Outline of Taped Lectures (cont'd)

Lecture 8: Social Movement Solutions Module 1: Why Collective Action? Module 2: What is a Social Movement? Module 3: What is the Role of Leadership? Module 4: What Can I Do? (Part 1) Module 5: What Can I Do? (Part 2)

Lecture 9: Behavioral Changes Changing Social Norms & Behavior Module 1: Integral Solutions Module 2: Go Local: Living Laboratories Module 3: UCSD Community Stations

Role of Religion in BtC Module 1: Blind and Lame Module 2: When Washington Won't Module 3: Neither Blind Nor Lame

Lecture 10: Local Solutions Module 1: Localization and the Bioregional Transition Module 2: Green Infrastructure, Ecosystems & Climate Action Plans Module 3: Trees Module 4: Food Forests Module 5: Food Waste, Energy, and Soil Module 6: Make Change Happen: Priorities for Action

Lecture 11: Public Communication *Climate Science Communications* Module 1: Preparation Module 2: Stories Module 3: Metaphors Module 4: Language Module 5: Solutions

Climate Communication Module 1: Why Climate Communication Often Fails Module 2: How Climate Communication Works Module 3: Moving Beyond Doom and Gloom

Societal Transformation Cluster (Solutions #2 & #3)

H. Han (UCSB)

F. Forman (UCSD)

J. Miles (UCI)

K. Pezzoli (UCSD)

R. Somerville (UCSD)

J. Christensen (UCLA)

12

VI. Detailed Outline of Taped Lectures (cont'd)

Governance Cluster (Solution #4)

Lecture 12: International Governance Module 1: Needed International Cooperative Institutions Module 2: Brief History of Climate Diplomacy Module 3: The Paris Agreement Module 4: Six Implementation Challenges

Market & Regulations Cluster (Solutions #5 & #6)

Lecture 13: Economics: Impacts and Policy Module 1: The Mitigation Challenge Module 2: Economic Impacts of Climate Change Module 3: Economic Regulation: Overcoming Market Failures

Lecture 14: Cost Effective & Efficient Climate Policies *Market-Based Climate Policy* Module 1: The Value of Market-Based Incentives Module 2: Current Climate Policy & Carbon Prices Module 3: In Depth: Incentives in the Automobile Sector

Technology Cluster (Solutions #7, #8 & #9)

Lecture 15: Energy Implications of Transportation M. Barth (UCR) Module 1: Major Concerns of Transportation Module 2: Transportation Emissions and Energy Impacts Module 3: Sustainable Transportation Solutions Module 4: Impacts of Intelligent Transportation Systems on Energy & Emissions Module 5: Role of Vehicle Automation on Energy & Emissions Lecture 16: New Technologies & Innovations for Carbon Neutrality Renewable Energy S. Samuelsen (UCI) Module 1: Alternatives to Combustion Module 2: Fuel Cell Technology Module 3: Evolution of the Electric Grid Module 4: Smart Grid Technology Nuclear Energy

Module 1: Energy From Nuclear Fission

VI. Detailed Outline of Taped Lectures (cont'd)

Module 2: Nuclear Energy: Safety Module 3: Economics Module 4: Near-Term Reactor Technologies Module 5: Future Directions

Lecture 17: Tecnonlogies for SLCPs Mitigation nologies for SLCPs Mitigation Module 1: SLPCs: Reduces Near-Term Warming Module 2: Black Carbon: Major Climate Pollutant Module 3: Methane Mitigation Module 4: Montreal Protocol Module 5: Kigali Amendment

Lecture 18: Enhancing Carbon Sinks Module 1: Introduction to Land Based Solutions Module 2: Soils Module 3: Agriculture and Forestry Module 4: Carbon Sequestration Case Study

P. Peterson (UCB)

D. Victor (UCSD)

M. Auffhammer (UCB)

M. Jacobsen (UCSD)

Ramanathan (UCSD) D. Zaelke (UCSB

Natural & Managed Ecosystems (Solution #10)

W. Silver (UCB)

Carbon Neutrality Initiative

Office of the President

UC San Diego

